Effects of Sleep Deficiency on Hormones, Cytokines, and Metabolism

  • Orfeu M. Buxton
  • Josiane L. Broussard
  • Alexa Katherine Zahl
  • Martica Hall
Part of the Energy Balance and Cancer book series (EBAC, volume 8)


What are the best approaches to reduce the staggering health and economic costs of the diabetes and obesity epidemics? Traditional efforts have centered on diet and exercise, which are key health behaviors during wakefulness. Yet, mounting evidence supports the addition of sleep as a third pillar of health. Increasingly, scientific research suggests insufficient sleep puts Americans at risk for weight gain and impaired glucose regulation. Synthesizing epidemiological studies with clinical experiments enables a more complete understanding of these relationships by tying population-level trends to underlying mechanisms and causes. Although the associations between sleep, obesity, and diabetes and their intertwined mechanisms are still emerging, the current “epidemic” of insufficient sleep seems to warrant individual, behavioral, and policy interventions.


Sleep Sleep deficiency Insomnia Circadian disruption Cytokines Hormones Glucose metabolism Insulin sensitivity Obesity Diabetes 


  1. 1.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief. 2012;82:1–8.PubMedGoogle Scholar
  2. 2.
    Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. JAMA. 1994;272(3):205–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Bell JF, Zimmerman FJ. Shortened nighttime sleep duration in early life and subsequent childhood obesity. Arch Pediatr Adolesc Med. 2010;164(9):840–5.PubMedGoogle Scholar
  4. 4.
    Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70.PubMedCrossRefGoogle Scholar
  5. 5.
    World Health Organization. Obesity and overweight fact sheet no.311. 2012.Google Scholar
  6. 6.
    Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282(16):1523–9.Google Scholar
  7. 7.
    Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood). 2009;28(5):w822–31.CrossRefGoogle Scholar
  8. 8.
    Thorpe KE, Florence CS, Howard DH, Joski P. The impact of obesity on rising medical spending. Health Aff (Millwood). 2004;Jul-Dec (Suppl Web Exclusives):W4-480-6.Google Scholar
  9. 9.
    Nock N, Berger NA. Obesity and Cancer. In: Berger NA, editor. Overview of mechanisms: In energy balance and cancer. Springer; 2010. 1st Edition, p. 129–79.Google Scholar
  10. 10.
    American Diabetes Association. Economic costs of diabetes in the US in 2007. Diabetes Care. 2008;31(3):596–615.CrossRefGoogle Scholar
  11. 11.
    World Health Organization. Diabetes: the cost of diabetes. 2012 [12/18/2012].Google Scholar
  12. 12.
    Centers for Disease Control and Prevention. National diabetes fact sheet, 2011. 2011.Google Scholar
  13. 13.
    Berkman LF, Buxton OM, Ertel K, Okechukwu C. Manager’s practices related to work-family balance predict employee cardiovascular risk and sleep duration in extended care settings. J Occup Health Psychol. 2010;115(3):316–29.CrossRefGoogle Scholar
  14. 14.
    Czeisler CA, Buxton OM. The human Circadian timing system and sleep-wake regulation. In: Kryger MH, Roth T, Dement WC, editors. Principles and practices of sleep medicine. Philadelphia: Elsevier; 2010. p. 402–19.Google Scholar
  15. 15.
    Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science. 2007;318:1786–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331(6022):1315–9.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    National Center on Sleep Disorders Research. National Institutes of Health Sleep Disorders Research plan. Bethesda: National Institutes of Health; 2011. 06/01/2011.Google Scholar
  18. 18.
    National Sleep Foundation. Executive summary of the 2005 “Sleep in America” poll 2005.Google Scholar
  19. 19.
    Knutson KL, Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci. 2008;1129:287–304.PubMedCrossRefGoogle Scholar
  20. 20.
    Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3(5 Suppl):S7–10.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Owens J. Classification and epidemiology of childhood sleep disorders. Prim Care. 2008;35(3):533–46. vii.PubMedCrossRefGoogle Scholar
  22. 22.
    Committee on Sleep Medicine Research Board on Health Sciences Policy. In: Colten HR, Alteveogt BM, editors. Sleep disorders and sleep deprivation: an unmet public health problem. Washington, DC: Institute of Medicine of the National Academies; The National Academies Press; 2006.Google Scholar
  23. 23.
    Taveras EM, Rifas-Shiman SL, Oken E, Gunderson EP, Gillman MW. Short sleep duration in infancy and risk of childhood overweight. Arch Pediatr Adolesc Med. 2008;162(4):305–11.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Agras WS, Hammer LD, McNicholas F, Kraemer HC. Risk factors for childhood overweight: a prospective study from birth to 9.5 years. J Pediatr. 2004;145(1):20–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504):1357.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gupta NK, Mueller WH, Chan W, Meininger JC. Is obesity associated with poor sleep quality in adolescents? Am J Hum Biol. 2002;14(6):762–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Patel SR, Hu FB. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring). 2008;16(3):643–53.CrossRefGoogle Scholar
  29. 29.
    Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):414–20.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Liu LL, Lawrence JM, Davis C, Liese AD, Pettitt DJ, Pihoker C, et al. Prevalence of overweight and obesity in youth with diabetes in USA: the SEARCH for Diabetes in Youth study. Pediatr Diabetes. 2010;11(1):4–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Matthews KA, Dahl RE, Owens JF, Lee L, Hall M. Sleep duration and insulin resistance in healthy black and white adolescents. Sleep. 2012;35(10):1353–8.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Javaheri S, Storfer-Isser A, Rosen CL, Redline S. Association of short and long sleep durations with insulin sensitivity in adolescents. J Pediatr. 2011;158(4):617–23.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Björkelund C, Bondyr-Carlsson D, Lapidus L, Lissner L, Mansson J, Skoog I, et al. Sleep disturbances in midlife unrelated to 32-year diabetes incidence: the prospective population study of women in Gothenburg. Diabetes Care. 2005;28(11):2739–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Ayas NT, White DP, Manson JE, Stampfer MJ, Speizer FE, Malhotra A, et al. A prospective study of sleep duration and coronary heart disease in women. Arch Int Med. 2003;163(2):205–9.CrossRefGoogle Scholar
  35. 35.
    Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med. 2010;71(5):1027–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585–92.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Grandner MA, Hale L, Moore M, Patel NP. Mortality associated with short sleep duration: the evidence, the possible mechanisms, and the future. Sleep Med Rev. 2010;14(3):191–203.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8(1):21–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Steinert RE, Poller B, Castelli MC, Drewe J, Beglinger C. Oral administration of glucagon-like peptide 1 or peptide YY 3–36 affects food intake in healthy male subjects. Am J Clin Nutr. 2010;92(4):810–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Garaulet M, Ortega FB, Ruiz JR, Rey-Lopez JP, Beghin L, Manios Y, et al. Short sleep duration is associated with increased obesity markers in European adolescents: effect of physical activity and dietary habits. The HELENA study. Int J Obes. 2011;35(10):1308–17.CrossRefGoogle Scholar
  41. 41.
    Buxton OM, Quintiliani LM, Yang MH, Ebbeling CB, Stoddard AM, Pereira LK, et al. Association of sleep adequacy with more healthful food choices and positive workplace experiences among motor freight workers. Am J Public Health. 2009;99:636–43.CrossRefGoogle Scholar
  42. 42.
    Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):e62.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Chaput JP, Despres JP, Bouchard C, Tremblay A. Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity (Silver Spring). 2007;15(1):253–61.CrossRefGoogle Scholar
  44. 44.
    Raynor HA, Van Walleghen EL, Niemeier H, Butryn ML, Wing RR. Do food provisions packaged in single-servings reduce energy intake at breakfast during a brief behavioral weight-loss intervention? J Am Diet Assoc. 2009;109(11):1922–5.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Chapman CD, Benedict C, Brooks SJ, Schioth HB. Lifestyle determinants of the drive to eat: a meta-analysis. Am J Clin Nutr. 2012;96(3):492–7.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D. Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr. 2010;91(6):1550–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H, et al. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009;90(6):1476–82.PubMedCrossRefGoogle Scholar
  48. 48.
    St-Onge MP, Roberts AL, Chen J, Kelleman M, O’Keeffe M, RoyChoudhury A, et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011;94(2):410–6.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–33.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Beebe DW, Miller N, Kirk S, Daniels SR, Amin R. The association between obstructive sleep apnea and dietary choices among obese individuals during middle to late childhood. Sleep Med. 2011;12(8):797–9.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Simon C, Gronfier C, Schlienger JL, Brandenberger G. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab. 1998;83(6):1893–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Mullington JM, Chan JL, Van Dongen HPA, Szuba MP, Samaras J, Price NJ, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003;15:851–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Dzaja A, Dalal MA, Himmerich H, Uhr M, Pollmacher T, Schuld A. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am J Physiol Endocrinol Metab. 2004;286(6):E963–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Spiegel K, Leproult R, Tasali E, Penev P, Van Cauter E. Sleep curtailment results in decreased leptin levels, elevated ghrelin levels and increased hunger and appetite. Ann Int Med. 2004;141:846–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Spiegel K, Leproult R, L’Hermite-Balériaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med. 2001;226(11):963–77.Google Scholar
  57. 57.
    Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Int Med. 2004;141(11):846–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Buxton OM, Cain SW, O’Connor SP, Porter JH, Duffy JF, Wang W, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 2012;4(129):129ra43.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Omisade A, Buxton OM, Rusak B. Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav. 2010;99(5):651–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Int Med. 2010;153(7):435–41.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    St-Onge MP, O’Keeffe M, Roberts AL, Roychoudhury A, Laferrere B. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women. Sleep. 2012;35(11):1503–10.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Magee CA, Huang XF, Iverson DC, Caputi P. Acute sleep restriction alters neuroendocrine hormones and appetite in healthy male adults. Sleep Biol Rhythms. 2009;7:125–7.CrossRefGoogle Scholar
  63. 63.
    Benedict C, Brooks SJ, O’Daly OG, Almen MS, Morell A, Aberg K, et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: an fMRI study. J Clin Endocrinol Metab. 2012;97(3):E443–7.PubMedCrossRefGoogle Scholar
  64. 64.
    St-Onge MP, McReynolds A, Trivedi ZB, Roberts AL, Sy M, Hirsch J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am J Clin Nutr. 2012;95(4):818–24.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Barber L, Grawitch MJ, Munz DC. Are better sleepers more engaged workers? A self-regulatory approach to sleep hygiene and work engagement. Stress Health. 2012;29(4):307–16Google Scholar
  66. 66.
    Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev. 2007;11(3):163–78.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Shlisky JD, Hartman TJ, Kris-Etherton PM, Rogers CJ, Sharkey NA, Nickols-Richardson SM. Partial sleep deprivation and energy balance in adults: an emerging issue for consideration by dietetics practitioners. J Acad Nutr Diet. 2012;112(11):1785–97.PubMedCrossRefGoogle Scholar
  68. 68.
    Benedict C, Hallschmid M, Lassen A, Mahnke C, Schultes B, Schioth HB, et al. Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr. 2011;93(6):1229–36.PubMedCrossRefGoogle Scholar
  69. 69.
    Nedeltcheva AV, Imperial JG, Penev PD. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss. Obesity. 2012;20(7):1379–86.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for one week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–3.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Kuhn E, Brodan V, Brodanova M, Rysanek K. Metabolic reflection of sleep deprivation. Act Nerv Super (Praha). 1969;11(3):165–74.Google Scholar
  72. 72.
    Morselli LL, Guyon A, Spiegel K. Sleep and metabolic function. Pflugers Archiv: Eur J Physiol. 2012;463(1):139–60.CrossRefGoogle Scholar
  73. 73.
    Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Haack M, Sanchez E, Mullington JM. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep. 2007;30(9):1145–52.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab. 2004;89(5):2119–26.PubMedCrossRefGoogle Scholar
  76. 76.
    Meier-Ewert HK, Ridker PM, Rifai N, Regan MM, Price NJ, Dinges DF, et al. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol. 2004;43(4):678–83.PubMedCrossRefGoogle Scholar
  77. 77.
    Grandner MA, Buxton OM, Jackson N, Sands M, Pandey A, Jean-Louis G. Extreme sleep durations and increased c-reactive protein: effects of sex and ethnoracial group. Sleep. 2013;36(5):769–779E.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Buxton OM, Ellenbogen JM, Wang W, Carballeira A, O’Connor S, Cooper D, et al. Sleep disruption due to hospital noises: a prospective evaluation. Ann Int Med. 2012;157(3):170–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Toshihiro M, Saito K, Takikawa S, Takebe N, Onoda T, Satoh J. Psychosocial factors are independent risk factors for the development of Type 2 diabetes in Japanese workers with impaired fasting glucose and/or impaired glucose tolerance. Diabet Med. 2008;25(10):1211–7.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Nedeltcheva AV, Kessler L, Imperial J, Penev PD. Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metab. 2009;94(9):3242–50.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Schmid SM, Hallschmid M, Jauch-Chara K, Bandorf N, Born J, Schultes B. Sleep loss alters basal metabolic hormone secretion and modulates the dynamic counterregulatory response to hypoglycemia. J Clin Endocrinol Metab. 2007;92(8):3044–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized crossover study. Ann Intern Med. 2012;157(8):549–57.PubMedCrossRefGoogle Scholar
  83. 83.
    Leproult R, Copinschi G, Buxton O, Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep. 1997;20(10):865–70.PubMedGoogle Scholar
  84. 84.
    Dijk DJ. Slow-wave sleep, diabetes, and the sympathetic nervous system. Proc Natl Acad Sci U S A. 2008;105(4):1107–8.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Irwin M, Thompson J, Miller C, Gillin JC, Ziegler M. Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J Clin Endocrinol Metab. 1999;84(6):1979–85.PubMedCrossRefGoogle Scholar
  86. 86.
    Marangou AG, Alford FP, Ward G, Liskaser F, Aitken PM, Weber KM, et al. Hormonal effects of norepinephrine on acute glucose disposal in humans: a minimal model analysis. Metabolism. 1988;37(9):885–91.PubMedCrossRefGoogle Scholar
  87. 87.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64–71.PubMedCentralCrossRefGoogle Scholar
  88. 88.
    Pamidi S, Wroblewski K, Broussard J, Day A, Hanlon EC, Abraham V, et al. Obstructive sleep apnea in young lean men: impact on insulin sensitivity and secretion. Diabetes Care. 2012;35(11):2384–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Orfeu M. Buxton
    • 1
    • 2
    • 3
    • 4
  • Josiane L. Broussard
    • 5
  • Alexa Katherine Zahl
    • 6
  • Martica Hall
    • 7
  1. 1.Division of Sleep MedicineHarvard Medical SchoolBostonUSA
  2. 2.Department of MedicineBrigham and Women’s HospitalBostonUSA
  3. 3.Department of Biobehavioral HealthPennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of Social and Behavioral SciencesHarvard School of Public HealthBostonUSA
  5. 5.Cedars-Sinai Medical CenterDiabetes and Obesity Research InstituteLos AngelesUSA
  6. 6.Harvard UniversityCambridgeUSA
  7. 7.Departments of Psychiatry, Psychology, and Clinical and Translational ScienceUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations