Skip to main content

Vaginal Delivery of Biopharmaceuticals

  • Chapter
  • First Online:

Abstract

The vagina may be an interesting alternative route for the delivery of biopharmaceuticals, particularly for the management of local conditions or the prevention of infection. The field of anti-HIV microbicides has been particularly prolific in the development of different active peptide/protein-based molecules, as well as of therapeutic genetic material, intended for vaginal administration. Alongside, vaginal vaccination has attracted considerable interest. However, the inherent features of the vaginal tract provide important hurdles to the optimized performance of active biomolecules and require rationale approaches toward the development of suitable products. This chapter provides an overview on such challenges and strategies adopted for the vaginal delivery of biopharmaceuticals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexander NJ, Baker E, Kaptein M, Karck U, Miller L, Zampaglione E. Why consider vaginal drug administration? Fertil Steril. 2004;82(1):1–12.

    PubMed  Google Scholar 

  2. Bartusevicius A, Barcaite E, Nadisauskiene R. Oral, vaginal and sublingual misoprostol for induction of labor. Int J Gynaecol Obstet. 2005;91(1):2–9.

    CAS  PubMed  Google Scholar 

  3. Nurbhai M, Grimshaw J, Watson M, Bond C, Mollison J, Ludbrook A. Oral versus intra-vaginal imidazole and triazole anti-fungal treatment of uncomplicated vulvovaginal candidiasis (thrush). Cochrane Database Syst Rev. 2007;(4):CD002845.

    Google Scholar 

  4. Roumen FJ. The contraceptive vaginal ring compared with the combined oral contraceptive pill: a comprehensive review of randomized controlled trials. Contraception. 2007;75(6):420–9.

    CAS  PubMed  Google Scholar 

  5. Benziger DP, Edelson J. Absorption from the vagina. Drug Metab Rev. 1983;14(2):137–68.

    CAS  PubMed  Google Scholar 

  6. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103(2):301–13.

    CAS  PubMed  Google Scholar 

  7. Katz DF, Henderson MH, Owen DH, Plenys AM, Walmer DK. What is needed to advance vaginal formulation technology? In: Rencher WF, editor. Vaginal microbicide formulations workshop. Philadelphia: Lippincott-Raven Publishers; 1998. pp. 90–9.

    Google Scholar 

  8. Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.

    CAS  PubMed  Google Scholar 

  9. Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16(9):1809–13.

    CAS  PubMed  Google Scholar 

  10. Caillouette JC, Sharp CF, Jr., Zimmerman GJ, Roy S. Vaginal pH as a marker for bacterial pathogens and menopausal status. Am J Obstet Gynecol. 1997;176(6):1270–75.

    CAS  PubMed  Google Scholar 

  11. Acartürk F, Parlatan ZI, Saracoglu OF. Comparison of vaginal aminopeptidase enzymatic activities in various animals and in humans. J Pharm Pharmacol. 2001;53(11):1499–504.

    PubMed  Google Scholar 

  12. das Neves J, Amaral MH, Bahia MF. Vaginal drug delivery. In: Gad SC, editor. Pharmaceutical Manufacturing Handbook: Production and Processes. Hoboken: Wiley; 2008. pp. 809–78.

    Google Scholar 

  13. das Neves J, Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, Rodrigues F, Sarmento B. Vaginal mucosa and drug delivery. In: Khutoryanskiy VV, editor. Mucoadhesive Materials and Drug Delivery Systems. Chichester: Wiley; 2014. (In press).

    Google Scholar 

  14. Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technol Today. 2000;3(10):359–64.

    CAS  PubMed  Google Scholar 

  15. Woolfson AD, Malcolm RK, Gallagher R. Drug delivery by the intravaginal route. Crit Rev Ther Drug Carrier Syst. 2000;17(5):509–55.

    CAS  PubMed  Google Scholar 

  16. Hofmeyr GJ, Gulmezoglu AM. Vaginal misoprostol for cervical ripening and induction of labour. Cochrane Database Syst Rev. 2003;(1):CD000941.

    Google Scholar 

  17. Johansson ED, Sitruk-Ware R. New delivery systems in contraception: vaginal rings. Am J Obstet Gynecol. 2004;190(4 Suppl 1): S54–9.

    CAS  PubMed  Google Scholar 

  18. Vollebregt A, van’t Hof DB, Exalto N. Prepidil compared to propess for cervical ripening. Eur J Obstet Gynecol Reprod Biol. 2002;104(2):116–9.

    CAS  PubMed  Google Scholar 

  19. Ariën KK, Jespers V, Vanham G. HIV sexual transmission and microbicides. Rev Med Virol. 2011;21(2):110–33.

    Google Scholar 

  20. Shattock RJ, Rosenberg Z. Microbicides: topical prevention against HIV. Cold Spring Harb Perspect Med. 2012;2(2):a007385.

    PubMed  Google Scholar 

  21. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, Kharsany AB, Sibeko S, Mlisana KP, Omar Z, Gengiah TN, Maarschalk S, Arulappan N, Mlotshwa M, Morris L, Taylor D. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Obiero J, Mwethera PG, Wiysonge CS. Topical microbicides for prevention of sexually transmitted infections. Cochrane Database Syst Rev. 2012;6:CD007961.

    PubMed  Google Scholar 

  23. Braunstein S, van de Wijgert J. Preferences and practices related to vaginal lubrication: implications for microbicide acceptability and clinical testing. J Womens Health. 2005;14(5):424–33.

    Google Scholar 

  24. Emau P, Tian B, O’Keefe BR, Mori T, McMahon JB, Palmer KE, Jiang Y, Bekele G, Tsai CC. Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide. J Med Primatol. 2007;36(4–5):244–53.

    CAS  PubMed  Google Scholar 

  25. Welch BD, Francis JN, Redman JS, Paul S, Weinstock MT, Reeves JD, Lie YS, Whitby FG, Eckert DM, Hill CP, Root MJ, Kay MS. Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol. 2010;84(21):11235–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Eade CR, Wood MP, Cole AM. Mechanisms and modifications of naturally occurring host defense peptides for anti-HIV microbicide development. Curr HIV Res. 2012;10(1):61–72.

    CAS  PubMed  Google Scholar 

  27. Hooven TA, Randis TM, Hymes SR, Rampersaud R, Ratner AJ. Retrocyclin inhibits Gardnerella vaginalis biofilm formation and toxin activity. J Antimicrob Chemother. 2012;67(12):2870–2.

    CAS  PubMed  Google Scholar 

  28. Veselinovic M, Neff CP, Mulder LR, Akkina R. Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology. 2012;432(2):505–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Morellato-Castillo L, Acharya P, Combes O, Michiels J, Descours A, Ramos OH, Yang Y, Vanham G, Arien KK, Kwong PD, Martin L, Kessler P. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein. J Med Chem. 2013;56(12):5033–47.

    Google Scholar 

  30. Bogers WM, Bergmeier LA, Ma J, Oostermeijer H, Wang Y, Kelly CG, P. Ten Haaft, Singh M, Heeney JL, Lehner T. A novel HIV-CCR5 receptor vaccine strategy in the control of mucosal SIV/HIV infection. AIDS. 2004;18(1):25–36.

    PubMed  Google Scholar 

  31. Kanazawa T, Takashima Y, Okada H. Vaginal DNA vaccination against infectious diseases transmitted through the vagina. Front Biosci (Elite Ed.). 2012;4:2340–53.

    Google Scholar 

  32. Shin H, Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature. 2012;491(7424):463–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Magliani W, Conti S, Cassone A, De Bernardis F, Polonelli L. New immunotherapeutic strategies to control vaginal candidiasis. Trends Mol Med. 2002;8(3):121–6.

    CAS  PubMed  Google Scholar 

  34. Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release. 2013;167(1):29–39.

    CAS  PubMed  Google Scholar 

  35. Castle PE, Whaley KJ, Hoen TE, Moench TR, Cone RA. Contraceptive effect of sperm-agglutinating monoclonal antibodies in rabbits. Biol Reprod. 1997;56(1):153–9.

    CAS  PubMed  Google Scholar 

  36. Norton EJ, Diekman AB, Westbrook VA, Flickinger CJ, Herr JC. RASA, a recombinant single-chain variable fragment (scFv) antibody directed against the human sperm surface: implications for novel contraceptives. Hum Reprod. 2001;16(9):1854–60.

    CAS  PubMed  Google Scholar 

  37. Corbo DC, Liu JC, Chien YW. Characterization of the barrier properties of mucosal membranes. J Pharm Sci. 1990;79(3):202–6.

    CAS  PubMed  Google Scholar 

  38. van der Bijl P, van Eyk AD. Human vaginal mucosa as a model of buccal mucosa for in vitro permeability studies: an overview. Curr Drug Deliv. 2004;1(2):129–35.

    Google Scholar 

  39. van der Bijl P, van Eyk AD, Thompson IO. Permeation of 17beta-estradiol through human vaginal and buccal mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(4):393–8.

    Google Scholar 

  40. van der Bijl P, van Eyk AD, Thompson IO, Stander IA. Diffusion rates of vasopressin through human vaginal and buccal mucosa. Eur J Oral Sci. 1998;106(5):958–62.

    Google Scholar 

  41. van der Bijl P, Penkler L, van Eyk AD. Permeation of sumatriptan through human vaginal and buccal mucosa. Headache. 2000;40(2):137–41.

    Google Scholar 

  42. van der Bijl P, van Eyk AD. Comparative in vitro permeability of human vaginal, small intestinal and colonic mucosa. Int J Pharm. 2003;261(1–2):147–52.

    Google Scholar 

  43. Chan RL, Henzl MR, LePage ME, LaFargue J, Nerenberg CA, Anik S, Chaplin MD. Absorption and metabolism of nafarelin, a potent agonist of gonadotropin-releasing hormone. Clin Pharmacol Ther. 1988;44(3):275–82.

    CAS  PubMed  Google Scholar 

  44. Cole AL, Herasimtschuk A, Gupta P, Waring AJ, Lehrer RI, Cole AM. The retrocyclin analogue RC-101 prevents human immunodeficiency virus type 1 infection of a model human cervicovaginal tissue construct. Immunology. 2007;121(1):140–5.

    CAS  PubMed  Google Scholar 

  45. Yamamoto A, Hayakawa E, Lee VH. Insulin and proinsulin proteolysis in mucosal homogenates of the albino rabbit: implications in peptide delivery from nonoral routes. Life Sci. 1990;47(26):2465–74.

    CAS  PubMed  Google Scholar 

  46. Chun IK, Chien YW. Transmucosal delivery of methionine enkephalin. I: solution stability and kinetics of degradation in various rabbit mucosa extracts. J Pharm Sci. 1993;82(4):373–8.

    CAS  PubMed  Google Scholar 

  47. Acartürk F, Robinson JR. Vaginal permeability and enzymatic activity studies in normal and ovariectomized rabbits. Pharm Res. 1996;13(5):779–83.

    PubMed  Google Scholar 

  48. Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol. 1998;16(13):1361–4.

    CAS  PubMed  Google Scholar 

  49. Castle PE, Karp DA, Zeitlin L, Garcia-Moreno EB, Moench TR, Whaley KJ, Cone RA. Human monoclonal antibody stability and activity at vaginal pH. J Reprod Immunol. 2002;56(1–2):61–76.

    CAS  PubMed  Google Scholar 

  50. Saltzman WM, Radomsky ML, Whaley KJ, Cone RA. Antibody diffusion in human cervical mucus. Biophys J. 1994;66(2 Pt 1):508–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J. 2001;81(4):1930–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Sassi AB, Bunge KE, Hood BL, Conrads TP, Cole AM, Gupta P, Rohan LC. Preformulation and stability in biological fluids of the retrocyclin RC-101, a potential anti-HIV topical microbicide. AIDS Res Ther. 2011;8:27.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, Hu Q, Ketas T, Marx PA, Klasse PJ, Burton DR, Moore JP. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med. 2003;9(3):343–6.

    CAS  PubMed  Google Scholar 

  54. Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, Mefford M, Piatak M Jr., Lifson JD, Salkowitz JR, Rodriguez B, Blauvelt A, Hartley O. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science. 2004;306(5695):485–7.

    CAS  PubMed  Google Scholar 

  55. Van Herrewege Y, Morellato L, Descours A, Aerts L, Michiels J, Heyndrickx L, Martin L, Vanham G. CD4 mimetic miniproteins: potent anti-HIV compounds with promising activity as microbicides. J Antimicrob Chemother. 2008;61(4):818–26.

    CAS  PubMed  Google Scholar 

  56. Zeitlin L, Pauly M, Whaley KJ. Second-generation HIV microbicides: continued development of griffithsin. Proc Natl Acad Sci U S A. 2009;106(15):6029–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, Xu Z, Seung E, Deruaz M, Dudek T, Einarsson JI, Yang L, Allen TM, Luster AD, Tager AM, Dykxhoorn DM, Lieberman J. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest. 2011;121(6):2401–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma J, Stoger E, Capell T, Christou P. Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci U S A. 2008;105(10):3727–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. O’Keefe BR, Vojdani F, Buffa V, Shattock RJ, Montefiori DC, Bakke J, Mirsalis J, d’Andrea AL, Hume SD, Bratcher B, Saucedo CJ, McMahon JB, Pogue GP, Palmer KE. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc Natl Acad Sci U S A. 2009;106(15):6099–104.

    PubMed Central  PubMed  Google Scholar 

  60. Kramski M, Center RJ, Wheatley AK, Jacobson JC, Alexander MR, Rawlin G, Purcell DF. Hyperimmune bovine colostrum as a low-cost, large-scale source of antibodies with broad neutralizing activity for HIV-1 envelope with potential use in microbicides. Antimicrob Agents Chemother. 2012;56(8):4310–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Morimoto K, Takeeda T, Nakamoto Y, Morisaka K. Effective vaginal absorption of insulin in diabetic rats and rabbits using polyacrylic acid aqueous gel bases. Int J Pharm. 1982;12(2–3):107–11.

    CAS  Google Scholar 

  62. Wang B, Dang K, Agadjanyan MG, Srikantan V, Li F, Ugen KE, Boyer J, Merva M, Williams WV, Weiner DB. Mucosal immunization with a DNA vaccine induces immune responses against HIV-1 at a mucosal site. Vaccine. 1997;15(8):821–5.

    CAS  PubMed  Google Scholar 

  63. Veazey RS, Klasse PJ, Schader SM, Hu Q, Ketas TJ, Lu M, Marx PA, Dufour J, Colonno RJ, Shattock RJ, Springer MS, Moore JP. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature. 2005;438(7064):99–102.

    CAS  PubMed  Google Scholar 

  64. das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1–2):1–14.

    CAS  PubMed  Google Scholar 

  65. Li L, Ben Y, Yuan S, Jiang S, Xu J, Zhang X. Efficacy, stability, and biosafety of sifuvirtide gel as a microbicide candidate against HIV-1. PLoS One. 2012;7(5):e37381.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Dereuddre-Bosquet N, Morellato-Castillo L, Brouwers J, Augustijns P, Bouchemal K, Ponchel G, Ramos OHP, Herrera C, Stefanidou M, Shattock R, Heyndrickx L, Vanham G, Kessler P, Le Grand R, Martin L. MiniCD4 microbicide prevents HIV infection of human mucosal explants and vaginal transmission of SHIV162P3 in cynomolgus macaques. PLoS Pathog. 2012;8(12):e1003071.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Curran RM, Donnelly L, Morrow RJ, Fraser C, Andrews G, Cranage M, Malcolm RK, Shattock RJ, Woolfson AD. Vaginal delivery of the recombinant HIV-1 clade-C trimeric gp140 envelope protein CN54gp140 within novel rheologically structured vehicles elicits specific immune responses. Vaccine. 2009;27(48):6791–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Donnelly L, Curran RM, Tregoning JS, McKay PF, Cole T, Morrow RJ, Kett VL, Andrews GP, Woolfson AD, Malcolm RK, Shattock RJ. Intravaginal immunization using the recombinant HIV-1 clade-C trimeric envelope glycoprotein CN54gp140 formulated within lyophilized solid dosage forms. Vaccine. 2011;29(27):4512–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gupta PN, Pattani A, Curran RM, Kett VL, Andrews GP, Morrow RJ, Woolfson AD, Malcolm RK. Development of liposome gel based formulations for intravaginal delivery of the recombinant HIV-1 envelope protein CN54gp140. Eur J Pharm Sci. 2012;46(5):315–22.

    CAS  PubMed  Google Scholar 

  70. Bilensoy E, Rouf MA, Vural I, Sen M, Hincal AA. Mucoadhesive, thermosensitive, prolonged-release vaginal gel for clotrimazole:beta-cyclodextrin complex. AAPS PharmSciTech. 2006;7(2):E38.

    Google Scholar 

  71. Date AA, Shibata A, Goede M, Sanford B, La Bruzzo K, Belshan M, Destache CJ. Development and evaluation of a thermosensitive vaginal gel containing raltegravir + efavirenz loaded nanoparticles for HIV prophylaxis. Antiviral Res. 2012;96(3):430–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Oh YK, Park JS, Yoon H, Kim CK. Enhanced mucosal and systemic immune responses to a vaginal vaccine coadministered with RANTES-expressing plasmid DNA using in situ-gelling mucoadhesive delivery system. Vaccine. 2003;21(17–18):1980–8.

    CAS  PubMed  Google Scholar 

  73. Han IK, Kim YB, Kang HS, Sul D, Jung WW, Cho HJ, Oh YK. Thermosensitive and mucoadhesive delivery systems of mucosal vaccines. Methods. 2006;38(2):106–11.

    CAS  PubMed  Google Scholar 

  74. Bouchemal K, Frelichowska J, Martin L, Lievin-Le Moal V, Le Grand R, Dereuddre-Bosquet N, Djabourov M, Aka-Any-Grah A, Koffi A, Ponchel G. Note on the formulation of thermosensitive and mucoadhesive vaginal hydrogels containing the miniCD4 M48U1 as anti-HIV-1 microbicide. Int J Pharm. 2013;454(2):649–52.

    Google Scholar 

  75. Gupta KM, Barnes SR, Tangaro RA, Roberts MC, Owen DH, Katz DF, Kiser PF. Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J Pharm Sci. 2007;96(3):670–81.

    CAS  PubMed  Google Scholar 

  76. Gunaseelan S, Gallay PA, Bobardt MD, Dezzutti CS, Esch T, Maskiewicz R. Sustained local delivery of structurally diverse HIV-1 microbicides released from sublimation enthalpy controlled matrices. Pharm Res. 2012;29(11):3156–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Loehr BI, Rankin R, Pontarollo R, King T, Willson P, Babiuk LA, van Drunen Littel-van den Hurk S. Suppository-mediated DNA immunization induces mucosal immunity against bovine herpesvirus-1 in cattle. Virology. 2001;289(2):327–33.

    CAS  PubMed  Google Scholar 

  78. Machado RM, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Vaginal films for drug delivery. J Pharm Sci. 2013;102(7):2069–81.

    CAS  PubMed  Google Scholar 

  79. Sassi AB, Cost MR, Cole AL, Cole AM, Patton DL, Gupta P, Rohan LC. Formulation development of retrocyclin 1 analog RC-101 as an anti-HIV vaginal microbicide product. Antimicrob Agents Chemother. 2011;55(5):2282–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Ballagh SA. Vaginal rings for menopausal symptom relief. Drugs Aging. 2004;21(12):757–66.

    PubMed  Google Scholar 

  81. Kiser PF, Johnson TJ, Clark JT. State of the art in intravaginal ring technology for topical prophylaxis of HIV infection. AIDS Rev. 2012;14(1):62–77.

    PubMed  Google Scholar 

  82. Malcolm RK, Fetherston SM, McCoy CF, Boyd P, Major I. Vaginal rings for delivery of HIV microbicides. Int J Womens Health. 2012;4:595–605.

    PubMed Central  PubMed  Google Scholar 

  83. Radomsky ML, Whaley KJ, Cone RA, Saltzman WM. Controlled vaginal delivery of antibodies in the mouse. Biol Reprod. 1992;47(1):133–40.

    CAS  PubMed  Google Scholar 

  84. Shen H, Goldberg E, Saltzman WM. Gene expression and mucosal immune responses after vaginal DNA immunization in mice using a controlled delivery matrix. J Control Release. 2003;86(2–3):339–48.

    CAS  PubMed  Google Scholar 

  85. Kuo-Haller P, Cu Y, Blum J, Appleton JA, Saltzman WM. Vaccine delivery by polymeric vehicles in the mouse reproductive tract induces sustained local and systemic immunity. Mol Pharm. 2010;7(5):1585–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Morrow RJ, Woolfson AD, Donnelly L, Curran R, Andrews G, Katinger D, Malcolm RK. Sustained release of proteins from a modified vaginal ring device. Eur J Pharm Biopharm. 2011;77(1):3–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Pattani A, Lowry D, Curran RM, McGrath S, Kett VL, Andrews GP, Malcolm RK. Characterisation of protein stability in rod-insert vaginal rings. Int J Pharm. 2012;430(1–2):89–97.

    CAS  PubMed  Google Scholar 

  88. Hubert P, Evrard B, Maillard C, Franzen-Detrooz E, Delattre L, Foidart JM, Noel A, Boniver J, Delvenne P. Delivery of granulocyte-macrophage colony-stimulating factor in bioadhesive hydrogel stimulates migration of dendritic cells in models of human papillomavirus-associated (pre)neoplastic epithelial lesions. Antimicrob Agents Chemother. 2004;48(11):4342–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Richardson JL, Illum L. (D) Routes of delivery: case studies: (8) the vaginal route of peptide and protein drug delivery. Adv Drug Deliv Rev. 1992;8(2–3):341–66.

    CAS  Google Scholar 

  90. Sayani AP, Chun IK, Chien YW. Transmucosal delivery of leucine enkephalin: stabilization in rabbit enzyme extracts and enhancement of permeation through mucosae. J Pharm Sci. 1993;82(11):1179–85.

    CAS  PubMed  Google Scholar 

  91. Okada H, Yamazaki I, Ogawa Y, Hirai S, Yashiki T, Mima H. Vaginal absorption of a potent luteinizing hormone-releasing hormone analog (leuprolide) in rats I: absorption by various routes and absorption enhancement. J Pharm Sci. 1982;71(12):1367–71.

    CAS  PubMed  Google Scholar 

  92. Okada H, Yamazaki I, Yashiki T, Mima H. Vaginal absorption of a potent luteinizing hormone-releasing hormone analogue (leuprolide) in rats II: mechanism of absorption enhancement with organic acids. J Pharm Sci. 1983;72(1):75–8.

    CAS  PubMed  Google Scholar 

  93. Okada H, Yamazaki I, Yashiki T, Shimamoto T, Mima H. Vaginal absorption of a potent luteinizing hormone-releasing hormone analogue (leuprolide) in rats. IV: Evaluation of the vaginal absorption and gonadotropin responses by radioimmunoassay. J Pharm Sci. 1984;73(3):298–302.

    CAS  PubMed  Google Scholar 

  94. van der Bijl P, van Eyk AD, Gareis AA, Thompson IO. Enhancement of transmucosal permeation of cyclosporine by benzalkonium chloride. Oral Dis. 2002;8(3):168–72.

    Google Scholar 

  95. Gali Y, Delezay O, Brouwers J, Addad N, Augustijns P, Bourlet T, Hamzeh-Cognasse H, Ariën KK, Pozzetto B, Vanham G. In vitro evaluation of viability, integrity and inflammation in genital epithelia upon exposure to pharmaceutical excipients and candidate microbicides. Antimicrob Agents Chemother. 2010;54(12):5105–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Değim Z, Değim T, Acartürk F, Erdoğan D, Özoğul C, Köksal M. Rectal and vaginal administration of insulin-chitosan formulations: an experimental study in rabbits. J Drug Target. 2005;13(10):563–72.

    PubMed  Google Scholar 

  97. Fatakdawala H, Uhland SA. Hydrogen peroxide mediated transvaginal drug delivery. Int J Pharm. 2011;409(1–2):121–7.

    CAS  PubMed  Google Scholar 

  98. Richardson JL, Illum L, Thomas NW. Vaginal absorption of insulin in the rat: effect of penetration enhancers on insulin uptake and mucosal histology. Pharm Res. 1992;9(7):878–83.

    CAS  PubMed  Google Scholar 

  99. Nakada Y, Miyake M, Awata N. Some factors affecting the vaginal absorption of human calcitonin in rats. Int J Pharm. 1993;89(3):169–75.

    CAS  Google Scholar 

  100. Valenta C, Marschutz M, Egyed C, Bernkop-Schnürch A. Evaluation of the inhibition effect of thiolated poly(acrylates) on vaginal membrane bound aminopeptidase N and release of the model drug LH-RH. J Pharm Pharmacol. 2002;54(5):603–10.

    CAS  PubMed  Google Scholar 

  101. Richardson JL, Farraj NF, Illum L. Enhanced vaginal absorption of insulin in sheep using lysophosphatidylcholine and a bioadhesive microsphere delivery system. Int J Pharm. 1992; 88(1–3):319–25.

    CAS  Google Scholar 

  102. O’Hagan DT, Rafferty D, Wharton S, Illum L. Intravaginal immunization in sheep using a bioadhesive microsphere antigen delivery system. Vaccine. 1993;11(6):660–4.

    PubMed  Google Scholar 

  103. Richardson JL, Ramires PA, Miglietta MR, Rochira M, Bacelle L, Callegaro L, Benedetti L. Novel vaginal delivery systems for calcitonin: I. Evaluation of HYAFF/calcitonin microspheres in rats. Int J Pharm. 1995;115(1):9–15.

    CAS  Google Scholar 

  104. Rochira M, Miglietta MR, Richardson JL, Ferrari L, Beccaro M, Benedetti L. Novel vaginal delivery systems for calcitonin: II. Preparation and characterization of HYAFF® microspheres containing calcitonin. Int J Pharm. 1996;144(1):19–26.

    CAS  Google Scholar 

  105. Bonucci E, Ballanti P, Ramires PA, Richardson JL, Benedetti LM. Prevention of ovariectomy osteopenia in rats after vaginal administration of Hyaff 11 microspheres containing salmon calcitonin. Calcif Tissue Int. 1995;56(4):274–9.

    CAS  PubMed  Google Scholar 

  106. Kish-Catalone TM, Lu W, Gallo RC, DeVico AL. Preclinical evaluation of synthetic -2 RANTES as a candidate vaginal microbicide to target CCR5. Antimicrob Agents Chemother. 2006;50(4):1497–509.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Kish-Catalone T, Pal R, Parrish J, Rose N, Hocker L, Hudacik L, Reitz M, Gallo R, Devico A. Evaluation of —2 RANTES vaginal microbicide formulations in a nonhuman primate simian/human immunodeficiency virus (SHIV) challenge model. AIDS Res Hum Retroviruses. 2007;23(1):33–42.

    CAS  PubMed  Google Scholar 

  108. Ning M, Guo Y, Pan H, Yu H, Gu Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv. 2005;12(6):399–407.

    CAS  PubMed  Google Scholar 

  109. Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res. 2009;26(3):502–11.

    CAS  PubMed  Google Scholar 

  110. Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater. 2009;8(6):526–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Steinbach JM, Weller CE, Booth CJ, Saltzman WM. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J Control Release. 2012;162(1):102–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Eszterhas SK, Ilonzo NO, Crozier JE, Celaj S, Howell AL. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants. Infect Dis Rep. 2011;3(2):e11.

    PubMed Central  PubMed  Google Scholar 

  113. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM, Lieberman J. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature. 2006;439(7072):89–94.

    CAS  PubMed  Google Scholar 

  114. Wu SY, Chang HI, Burgess M, McMillan NA. Vaginal delivery of siRNA using a novel PEGylated lipoplex-entrapped alginate scaffold system. J Control Release. 2011;155(3):418–26.

    CAS  PubMed  Google Scholar 

  115. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, Hanes J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.

    CAS  PubMed  Google Scholar 

  116. Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl. 2008;47(50):9726–9.

    Google Scholar 

  117. Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, Hanes J. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra179.

    Google Scholar 

  118. Medaglini D, Oggioni MR, Pozzi G. Vaginal immunization with recombinant gram-positive bacteria. Am J Reprod Immunol. 1998;39(3):199–208.

    CAS  PubMed  Google Scholar 

  119. Rao S, Hu S, McHugh L, Lueders K, Henry K, Zhao Q, Fekete RA, Kar S, Adhya S, Hamer DH. Toward a live microbial microbicide for HIV: commensal bacteria secreting an HIV fusion inhibitor peptide. Proc Natl Acad Sci USA. 2005;102(34):11993–8.

    CAS  PubMed  Google Scholar 

  120. Liu X, Lagenaur LA, Simpson DA, Essenmacher KP, Frazier-Parker CL, Liu Y, Tsai D, Rao SS, Hamer DH, Parks TP, Lee PP, Xu Q. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob Agents Chemother. 2006;50(10):3250–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Vangelista L, Secchi M, Liu X, Bachi A, Jia L, Xu Q, Lusso P. Engineering of Lactobacillus jensenii to secrete RANTES and a CCR5 antagonist analogue as live HIV-1 blockers. Antimicrob Agents Chemother. 2010;54(7):2994–3001.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Lagenaur LA, Sanders-Beer BE, Brichacek B, Pal R, Liu X, Liu Y, Yu R, Venzon D, Lee PP, Hamer DH. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol. 2011;4(6):648–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Beninati C, Oggioni MR, Boccanera M, Spinosa MR, Maggi T, Conti S, Magliani W, De Bernardis F, Teti G, Cassone A, Pozzi G, Polonelli L. Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol. 2000;18(10):1060–4.

    CAS  PubMed  Google Scholar 

  124. Lindgren M, Langel U. Classes and prediction of cell-penetrating peptides. Methods Mol Biol. 2011;683:3–19.

    CAS  PubMed  Google Scholar 

  125. Kanazawa T, Takashima Y, Shibata Y, Tsuchiya M, Tamura T, Okada H. Effective vaginal DNA delivery with high transfection efficiency is a good system for induction of higher local vaginal immune responses. J Pharm Pharmacol. 2009;61(11):1457–63.

    CAS  PubMed  Google Scholar 

  126. Kanazawa T, Tamura T, Yamazaki M, Takashima Y, Okada H. Needle-free intravaginal DNA vaccination using a stearoyl oligopeptide carrier promotes local gene expression and immune responses. Int J Pharm. 2013;447(1–2):70–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia, Portugal (grant VIH/SAU/0021/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José das Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

das Neves, J. (2014). Vaginal Delivery of Biopharmaceuticals. In: das Neves, J., Sarmento, B. (eds) Mucosal Delivery of Biopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9524-6_10

Download citation

Publish with us

Policies and ethics