Gene–Environment Interactions (G×E) in Behavioral Genetics

  • Laramie Duncan
Part of the Advances in Behavior Genetics book series (AIBG, volume 2)


This chapter focuses on gene–environment interactions, often abbreviated “G × E” and pronounced “G-by-E.” G × Es are interaction effects, distinct from genetic main effects. The presence of a G × E implies that the effect of an environmental variable (on phenotype) depends on genotype and vice versa and that the effect of genotype (on phenotype) depends on the environment. G × E effects have been studied in psychiatry and psychology for decades using a variety of methodological techniques, reviewed here. The first of four sections in this chapter is the “Introduction,” which provides a description of what G × Es are (and are not) and how they have historically been studied. It also covers conceptual issues related to G × E including gene–environment correlation (rGE), the form of G × Es, biological plausibility of various types of G × Es, and epigenetics as it pertains to G × E. Section “Current Issues” is focused primarily on the most common G × E method currently employed: the candidate G × E (cG × E) approach, also known as the measured G × E approach. A brief review of findings from the first decade of cG × E research in psychiatry and psychology is provided. Evidence that raises questions about the validity of cG × E findings is presented via discussion of statistical power, publication bias, and the estimated field-wise false discovery rate (FDR). Section “Conclusion” discusses the parallel course that G × E research has taken with genetic (main effects) research. The final section “Future Directions” briefly explains genome-wide interaction studies (GWIS) and suggests the most promising avenues for future G × E research.


Publication Bias False Discovery Rate Stressful Life Event Heritability Estimate Candidate Gene Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
  2. Bagot, R. C., & Meaney, M. J. (2010). Epigenetics and the biological basis of gene × environment interactions. Journal of the American Academy of Child and Adolescent Psychiatry, 49(8), 752–771. doi: 10.1016/j.jaac.2010.06.001.PubMedCrossRefGoogle Scholar
  3. Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene-environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48(5), 406–409. doi: 10.1002/dev.20152.PubMedCrossRefGoogle Scholar
  4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57(1), 289–300.Google Scholar
  5. Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398. doi: 10.1038/nature05913.PubMedCrossRefGoogle Scholar
  6. Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge, MA: Harvard University Press.Google Scholar
  7. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science (New York, N.Y.), 297(5582), 851–854. doi: 10.1126/science.1072290.CrossRefGoogle Scholar
  8. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science (New York, N.Y.), 301(5631), 386–389. doi: 10.1126/science.1083968.CrossRefGoogle Scholar
  9. Ceccarelli, S. (1996). Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. In M. Cooper & G. L. Hammer (Eds.), Plant adaptation and crop improvement (pp. 467–486). Wallingford, UK: CABI.Google Scholar
  10. Colhoun, H., Mckeigue, P., & Smith, G. (2003). Problems of reporting genetic associations with complex outcomes. The Lancet, 361(9360), 865–872. doi: 10.1016/S0140-6736(03)12715-8.CrossRefGoogle Scholar
  11. Dick, D. M. (2011). Gene-environment interaction in psychological traits and disorders. Annual Review of Clinical Psychology, 7, 383–409. doi: 10.1146/annurev-clinpsy-032210-104518.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dick, D. M., Rose, R. J., Viken, R. J., Kaprio, J., & Koskenvuo, M. (2001). Exploring gene-environment interactions: Socioregional moderation of alcohol use. Journal of Abnormal Psychology, 110(4), 625–632.PubMedCrossRefGoogle Scholar
  13. Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. The American Journal of Psychiatry, 168(10), 1041–1049. doi: 10.1176/appi.ajp.2011.11020191.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Duncan, L. E., Pollastri, A., & Smoller, J. W. (accepted 2013). Mind the gap: why many geneticists and psychological scientists have discrepant views about gene-environment interaction (G×E) research. American Psychologist.Google Scholar
  15. Dunn, E. C., Uddin, M., Subramanian, S. V., Smoller, J. W., Galea, S., & Koenen, K. C. (2011). Research review: Gene-environment interaction research in youth depression—A systematic review with recommendations for future research. Journal of Child Psychology and Psychiatry, 52(12), 1223–1238. doi: 10.1111/j.1469-7610.2011.02466.x.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Eaves, L. J. (2006). Genotype × environment interaction in psychopathology: Fact or artifact? Twin Research and Human Genetics, 9(1), 1–8. doi: 10.1375/183242706776403073.PubMedCrossRefGoogle Scholar
  17. Eaves, L., Silberg, J., & Erkanli, A. (2003). Resolving multiple epigenetic pathways to adolescent depression. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44(7), 1006–1014.PubMedCrossRefGoogle Scholar
  18. Hanscombe, K. B., Trzaskowski, M., Haworth, C. M. A., Davis, O. S. P., Dale, P. S., & Plomin, R. (2012). Socioeconomic status (SES) and children’s intelligence (IQ): In a UK-representative sample SES moderates the environmental, not genetic, effect on IQ. PLoS ONE, 7(2), e30320. doi: 10.1371/journal.pone.0030320.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Heath, A. C., Eaves, L. J., & Martin, N. G. (1998). Interaction of marital status and genetic risk for symptoms of depression. Twin Research, 1(3), 119–122.PubMedCrossRefGoogle Scholar
  20. Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S., et al. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9362–9367. doi: 10.1073/pnas.0903103106.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124. doi: 10.1371/journal.pmed.0020124.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ioannidis, J. P. A., Tarone, R., & McLaughlin, J. K. (2011). The false-positive to false-negative ratio in epidemiologic studies. Epidemiology, 22(4), 450–456. doi: 10.1097/EDE.0b013e31821b506e.PubMedCrossRefGoogle Scholar
  23. Jinks, J. L., & Fulker, D. W. (1970). Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of the human behavior. Psychological Bulletin, 73(5), 311–349. doi: 10.1037/h0029135.PubMedCrossRefGoogle Scholar
  24. Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68(5), 444–454. doi: 10.1001/archgenpsychiatry.2010.189.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Keller, M. C., & Miller, G. (2006). Resolving the paradox of common, harmful, heritable mental disorders: Which evolutionary genetic models work best? The Behavioral and Brain Sciences, 29(4), 385–404; discussion 405–452. doi: 10.1017/S0140525X06009095
  26. Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11(10), 903–913. doi: 10.1038/ Scholar
  27. Kraft, P., Yen, Y.-C., Stram, D. O., Morrison, J., & Gauderman, W. J. (2007). Exploiting gene-environment interaction to detect genetic associations. Human Heredity, 63(2), 111–119. doi: 10.1159/000099183.PubMedCrossRefGoogle Scholar
  28. Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81(1), 41–79. doi: 10.1111/j.1467-8624.2009.01381.x.PubMedCrossRefGoogle Scholar
  29. Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene-environment interactions in psychopathology. Perspectives on Psychological Science, 1(1), 5–27. doi:  10.1111/j.1745-6916.2006.00002.x.CrossRefGoogle Scholar
  30. Munafò, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene × environment interactions at the serotonin transporter locus. Biological Psychiatry, 65(3), 211–219. doi: 10.1016/j.biopsych.2008.06.009.PubMedCrossRefGoogle Scholar
  31. Murcray, C. E., Lewinger, J. P., & Gauderman, W. J. (2009). Gene-environment interaction in genome-wide association studies. American Journal of Epidemiology, 169(2), 219–226. doi: 10.1093/aje/kwn353.PubMedCrossRefGoogle Scholar
  32. Paré, G., Cook, N. R., Ridker, P. M., & Chasman, D. I. (2010). On the use of variance per genotype as a tool to identify quantitative trait interaction effects: A report from the Women’s Genome Health Study. PLoS Genetics, 6(6), e1000981. doi: 10.1371/journal.pgen.1000981.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309–322. doi: 10.1037/0033-2909.84.2.309.PubMedCrossRefGoogle Scholar
  34. Plomin, R., DeFries, J. C., & McClearn, G. E. (1990). Behavioral genetics: A primer (2nd ed.). A series of books in psychology. New York, NY: W.H. Freeman/Times Books/Henry Holt & Co.Google Scholar
  35. Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5(6), 554–571. doi: 10.1375/136905202762342026.PubMedGoogle Scholar
  36. Risch, N., Herrell, R., Lehner, T., Liang, K.-Y., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression. JAMA, 301(23), 2462–2471. doi: 10.1001/jama.2009.878.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rose, R. J., Dick, D. M., Viken, R. J., & Kaprio, J. (2001). Gene-environment interaction in patterns of adolescent drinking: Regional residency moderates longitudinal influences on alcohol use. Alcoholism, Clinical and Experimental Research, 25(5), 637–643. doi: 10.1111/j.1530-0277.2001.tb02261.x.PubMedCrossRefGoogle Scholar
  38. Sonuga-Barke, E. J. S., Lasky-Su, J., Neale, B. M., Oades, R., Chen, W., Franke, B., et al. (2008). Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1359–1368. doi: 10.1002/ajmg.b.30860.CrossRefGoogle Scholar
  39. Tsuang, M. T., Bar, J. L., Stone, W. S., & Faraone, S. V. (2004). Gene-environment interactions in mental disorders. World Psychiatry, 3(2), 73–83.PubMedCentralPubMedGoogle Scholar
  40. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628. doi: 10.1046/j.0956-7976.2003.psci_1475.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Harvard School of Public Health, Massachusetts General Hospital, Harvard Medical SchoolBroad Institute of MIT and HarvardCambridgeUSA

Personalised recommendations