Abstract
In this monograph we will present the main topics concerning Green’s functions related to nth-order ordinary differential equations coupled with linear two-point boundary conditions. To show the potential of this theory and importance of obtaining qualitative and quantitative properties of this kind of functions, we will consider in this preliminary section a simple example to illustrate the results we are dealing with.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Afuwape, A.U., Omari, P., Zanolin, F.: Nonlinear perturbations of differential operators with nontrivial kernel and applications to third-order periodic boundary value problems. J. Math. Anal. Appl. 143, 35–56 (1989)
Appell, J., Zabrejko, P.P.: Nonlinear superposition operators. Cambridge Tracts in Mathematics, vol. 95. Cambridge University Press, Cambridge (1990)
Bernfeld, S.R., Lakshmikantham, V.: An introduction to nonlinear boundary value problems. Mathematics in Science and Engineering, vol. 109. Academic Press, New York (1974)
Cabada, A.: The method of lower and upper solutions for second, third, fourth, and higher order boundary value problems. J. Math. Anal. Appl. 185, 302–320 (1994)
Cabada, A.: The monotone method for first-order problems with linear and nonlinear boundary conditions. Appl. Math. Comput. 63, 163–186 (1994)
Cabada, A.: The method of lower and upper solutions for nth-order periodic boundary value problems. J. Appl. Math. Stoch. Anal. 7, 33–47 (1994)
Cabada, A.: The method of lower and upper solutions for third-order periodic boundary value problems. J. Math. Anal. Appl. 195, 568–589 (1995)
Cabada, A.: The monotone method for third order boundary value problems. In: Proceedings of the World Congress of Nonlinear Analysts, vol. I, pp. 211–221, Aug 1992. Walter de Gruyter, Tampa (1996)
Cabada, A.: Maximum principles for third-order initial and terminal value problems. In: Differential & Difference Equations and Applications, pp. 247–255. Hindawi Publishing Corporation, New York (2006)
Cabada, A.: An overview of the lower and upper solutions method with nonlinear boundary value conditions. Bound. Value Prob. 2011, 18 (2011) Article ID 893753
Cabada, A., Cid, J.A.: On the sign of the Green’s function associated to Hill’s equation with an indefinite potential. Appl. Math. Comput. 205, 303–308 (2008)
Cabada, A., Enguiça, R.: Positive solutions of fourth order problems with clamped beam boundary conditions. Nonlinear Anal. 74, 3112–3122 (2011)
Cabada, A., Lois, S.: Maximum principles for fourth and sixth order periodic boundary value problems. Nonlinear Anal. 29(10), 1161–1171 (1997)
Cabada, A., Lois, S.: Existence results for nonlinear problems with separated boundary conditions. Nonlinear Anal. 35, 449–456 (1999)
Cabada, A., Nieto, J.J.: Approximation of solutions for second order boundary value problems. Bull. Classe Sci. Acad. Roy. Bel. \({6}^{\underline{a}}\) Sér. II 10–11, 287–311 (1991)
Cabada, A., Sanchez, L.: A positive operator approach to the Neumann problem for a second order ordinary differential equation. J. Math. Anal. Appl. 204(3), 774–785 (1996)
Cabada, A., Tojo, F.A.: Comparison results for first order linear operators with reflection and periodic boundary value conditions. Nonlinear Anal. 78, 32–46 (2013)
Cabada, A., Cid, J.A., Sanchez, L.: Positivity and lower and upper solutions for fourth order boundary value problems. Nonlinear Anal. 67, 1599–1612 (2007)
Cabada, A., Cid, J.A., Máquez-Villamarín, B.: Computation of Green’s functions for boundary value problems with Mathematica. Appl. Math. Comput. 219(4), 1919–1936 (2012)
Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New Delhi (1987)
Coppel, W.A.: Disconjugacy. In: Lecture Notes in Mathematics, vol. 220. Springer, Berlin (1971)
De Coster, C., Habets, P.: An overview of the method of lower and upper solutions for ODEs. Nonlinear analysis and its applications to differential equations (Lisbon, 1998). Progress in Nonlinear Differential Equations and their Applications, vol. 43, pp. 3–22. Birkhäuser, Boston (2001)
De Coster, C., Habets, P.: The lower and upper solutions method for boundary value problems. Handbook of Differential Equations, pp. 69–160, Elsevier/North-Holland, Amsterdam (2004)
De Coster, C., Habets, P.: Two-point boundary value problems: lower and upper solutions. Mathematics in Science and Engineering, vol. 205. Elsevier B.V., Amsterdam (2006)
Duffy, D.G.: Green’s functions with applications. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2001)
Fabry, C., Habets, P.: Upper and lower solutions for second-order boundary value problems with nonlinear boundary conditions. Nonlinear Anal. 10(10), 985–1007 (1986)
Fried, H.M.: Green’s Functions and Ordered Exponentials. Cambridge University Press, Cambridge (2002)
Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)
Karlin, S.: Positive operators. J. Math. Mech. 8(6), 907–937 (1959)
Karlin, S.: The existence of eigenvalues for integral operators. Trans. Am. Math. Soc. 113, 1–17 (1964)
Kythe, P.: Green’s functions and linear differential equations. Theory, applications, and computation. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton (2011)
Ladde, G.S., Lakshmikantham, V., Vatsala, A.S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston (1985)
Lloyd, N.G.: Degree theory. Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge (1978)
Mawhin, J.: Points fixes, points critiques et problèmes aux limites. (French) Séminaire de Mathématiques Supérieures, vol. 92, p. 162. Presses de l’Université de Montréal, Montreal (1985)
Mawhin, J.: Twenty years of ordinary differential equations through twelve Oberwolfach meetings. Results Math. 21(1–2), 165–189 (1992)
Mawhin, J.: Boundary value problems for nonlinear ordinary differential equations: from successive approximations to topology. Development of Mathematics 1900–1950 (Luxembourg, 1992), pp. 443–477. Birkhäuser, Basel (1994)
Mawhin, J.: Bounded solutions of nonlinear ordinary differential equations. Non-linear analysis and boundary value problems for ordinary differential equations (Udine). CISM Courses and Lectures, vol. 371, pp. 121–147. Springer, Vienna (1996)
Melnikov, Y.A.: Green’s functions and infinite products. Bridging the Divide. Birkhäuser/Springer, New York (2011)
Melnikov, Y.A., Melnikov, M.Y.: Green’s functions. Construction and applications. de Gruyter Studies in Mathematics, vol. 42. Walter de Gruyter & Co., Berlin (2012)
Müller, M.: Über das Fundamentaltheorem in der theorie der gewöhnlichen differentialgleichungen. Math. Z. 26, 619–649 (1926)
Nkashama, M.N.: A generalizaded upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations. J. Math. Anal. Appl. 140, 381–395 (1989)
Novo, S., Obaya, R., Rojo, J.: Equations and Differential Systems (in Spanish). McGraw-Hill, New York (1995)
Omari, P., Trombetta, M.: Remarks on the lower and upper solutions method for second and third-order periodic boundary value problems. Appl. Math. Comput. 50, 1–21 (1992)
Perron, O.: Ein neuer existenzbeweis für die integrale der differentialgleinchung y′ = f(t, y). Math. Ann. 76, 471–484 (1915)
Picard, E.: Mémoire sur la théorie des équations aux derivés partielles et las méthode des approximations succesives. J. Math. 6, 145–210 (1890)
Picard, E.: Sur l’application des métodes d’approximations succesives à l’étude de certains équations différentielles ordinaires. J. Math. 9, 217–271 (1893)
Renardy, M., Rogers, R.C.: An introduction to partial differential equations. Texts in Applied Mathematics, vol. 13, 2nd edn. Springer, New York (2004)
Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)
Schröder, J.: On linear differential inequalities. J. Math. Anal. Appl. 22, 188–216 (1968)
Schröder, J.: Operator inequalities. Mathematics in Science and Engineering, vol. 147. Academic [Harcourt Brace Jovanovich, Publishers], New York (1980)
Scorza Dragoni, S.: Il problema dei valori ai limiti estudiato in grande per le equazione differenziale del secondo ordine. Math. Ann. 105, 133–143 (1931)
S̆eda, V., Nieto, J.J., Gera, M.: Periodic boundary value problems for nonlinear higher order ordinary differential equations. Appl. Math. Comput. 48, 71–82 (1992)
Şeremet, V.D.: Handbook of Green’s Functions and Matrices. With 1 CD-ROM (Windows and Macintosh). WIT Press, Southampton (2003)
Stakgold, I., Holst, M.: Green’s functions and boundary value problems, 3rd edn. Pure and Applied Mathematics (Hoboken). Wiley, Hoboken (2011)
Zeidler, E.: Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems. Translated from the German by Peter R. Wadsack. Springer, New York (1986)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2014 Alberto Cabada
About this chapter
Cite this chapter
Cabada, A. (2014). Green’s Functions in the Theory of Ordinary Differential Equations. In: Green’s Functions in the Theory of Ordinary Differential Equations. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9506-2_1
Download citation
DOI: https://doi.org/10.1007/978-1-4614-9506-2_1
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-9505-5
Online ISBN: 978-1-4614-9506-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)