Nanodroplets pp 115-141 | Cite as

Atomistic Mechanisms Underlying the Freezing Behavior of Metal Nanodroplets

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 18)


The freezing behavior of nanometer-sized particles of metallic systems is still an open issue, with considerable relevance to a wide spectrum of industrial applications. Understanding the fundamental mechanisms underlying the liquid-to-solid phase transition represents one of the necessary achievements to enable a definite progress for both science and engineering. Aimed at providing a general overview of the molecular dynamics methods that can be used to profitably investigate the response of these systems to a decrease of temperature, this chapter focuses on the phase transition behavior of Au and Ag droplets. In the idea of discussing specific cases as closest as possible to real ones, the control of temperature has been performed by using a collisional thermostat. It is shown that unsupported droplets on the order of a few nanometers in radius can exhibit a relatively complicated dynamics as the freezing point is approached.


Freezing Point Freezing Behavior Droplet Temperature Classical Nucleation Theory Hoover Thermostat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A. Ermini, ExtraInformatica s.r.l., is gratefully acknowledged for his helpful assistance. Financial support has been given by the University of Cagliari.


  1. 1.
    Moriarty, P.: Nanostructured materials. Rep. Prog. Phys. 64, 297–381 (2001)CrossRefGoogle Scholar
  2. 2.
    Jortner, J., Rao, C.N.R.: Nanostructured advanced materials. Perspectives and advances. Pure Appl. Chem. 74, 1491–1506 (2002)CrossRefGoogle Scholar
  3. 3.
    Hill, T.L.: A different approach to nanothermodynamics. Nano Lett. 1, 273–275 (2001)CrossRefGoogle Scholar
  4. 4.
    Baletto, F., Ferrando, R.: Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005)CrossRefGoogle Scholar
  5. 5.
    Ozin, G.A., Arsenault, A.C.: Nanochemistry. A Chemical Approach to Nanomaterials. RSC Publishing, Cambridge (2005)Google Scholar
  6. 6.
    Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008)CrossRefGoogle Scholar
  7. 7.
    Schmidt, M., Kusche, R., von Issendorf, B., Haberland, H.: Irregular variations in the melting point of size-selected atomic clusters. Nature 393, 238–240 (1998)CrossRefGoogle Scholar
  8. 8.
    Alivisatos, P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)CrossRefGoogle Scholar
  9. 9.
    Pawlow, P.Z.: Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Phys. Chem. (Munich) 65(1–35) (1909)Google Scholar
  10. 10.
    Hollomon, T.H., Turnbull, D.: Nucleation. Prog. Metal Phys. 4, 333–388 (1953)CrossRefGoogle Scholar
  11. 11.
    Wronski, C.R.M.: The size dependence of the melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731–1737 (1967)CrossRefGoogle Scholar
  12. 12.
    Coombes, C.J.: The melting of small particles of lead and indium. J. Phys. F Metal Phys. 2, 441–448 (1972)CrossRefGoogle Scholar
  13. 13.
    Buffat, P., Borel, J.-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976)CrossRefGoogle Scholar
  14. 14.
    Couchman, P.R., Jesser, W.A.: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977)CrossRefGoogle Scholar
  15. 15.
    Reiss, H., Mirabel, P., Whetten, R.L.: Capillarity theory for the “coexistence” of liquid and solid clusters. J. Phys. Chem. 92, 7241–7246 (1988)CrossRefGoogle Scholar
  16. 16.
    Sakai, H.: Surface induced melting of small particles. Surf. Sci. 351, 285–291 (1996)CrossRefGoogle Scholar
  17. 17.
    Peters, K.F., Cohen, J.B., Chung, Y.-W.: Melting of Pb nanocrystals. Phys. Rev. B 57, 13430–13438 (1998)CrossRefGoogle Scholar
  18. 18.
    Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., Allen, L.H.: Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996)CrossRefGoogle Scholar
  19. 19.
    Efremov, M.Yu., Schiettekatte, F., Zhang, M., Olson, E.A., Kwan, A.T., Berry, L.S., Allen, L.H.: Discrete periodic melting points in nanostructure. Phys. Rev. Lett. 85, 3560–3563 (2000)Google Scholar
  20. 20.
    Olson, E.A., Efremov, M.Y., Zhang, M., Zhang, Z., Allen, L.H.: Scanning nanocalorimeter for nanoliter scale liquid samples. J. Appl. Phys. 97, 034304 (2005)CrossRefGoogle Scholar
  21. 21.
    Delogu, F.: Thermodynamics on the nanoscale. J. Phys. Chem. B 109, 21938–21941 (2005)CrossRefGoogle Scholar
  22. 22.
    Berry, S.R., Rice, S.A., Ross, J.: Matter in Equilibrium: Statistical Mechanics and Thermodynamics, 2nd edn. Cambridge University Press, Cambridge (2004)Google Scholar
  23. 23.
    Christian, J.: The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy. Pergamon Press, Oxford (1965)Google Scholar
  24. 24.
    Kelton, K. F.: Crystal nucleation in liquids and glasses. In: Solid State Physics, Henry Ehrenreich, David Turnbull (Eds.), vol. 45, p. 75. Academic, New York, NY (1991)Google Scholar
  25. 25.
    Porter, D.A., Easterling, K.E.: Phase Transformations in Metals and Alloys, 2nd edn. Chapman and Hall, London (1992)CrossRefGoogle Scholar
  26. 26.
    Cahn, R.W., Haasen, P. (eds.): Physical Metallurgy: Fourth, Revised and Enhanced Edition. Elsevier Science BV, Amsterdam (1996)Google Scholar
  27. 27.
    Auer, S., Frenkel, D.: Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001)CrossRefGoogle Scholar
  28. 28.
    Auer, S., Frenkel, D.: Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413, 711–713 (2001)CrossRefGoogle Scholar
  29. 29.
    ten Wolde, P.R., Frenkel, D.: Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1977 (1997)CrossRefGoogle Scholar
  30. 30.
    Swope, W.C., Andersen, H.C.: 106-particles molecular-dynamics study of homogeneous nucleation of crystals in supercooled atomic liquid. Phys. Rev. B 41, 7042–7054 (1990)CrossRefGoogle Scholar
  31. 31.
    ten Wolde, P.R., Ruiz-Montero, M.J., Frenkel, D.: Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996)CrossRefGoogle Scholar
  32. 32.
    Moroni, D., ten Wolde, P.R., Bolhuis, P.G.: Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005)CrossRefGoogle Scholar
  33. 33.
    Bai, X.-M., Li, M.: Calculation of solid–liquid interfacial free energy: a classical nucleation theory based approach. J. Chem. Phys. 122, 224510 (2005)CrossRefGoogle Scholar
  34. 34.
    Wette, P., Schope, H.J., Palberg, T.: Microscopic investigations of homogeneous nucleation in charged sphere suspensions. J. Chem. Phys. 123, 174902 (2005)CrossRefGoogle Scholar
  35. 35.
    Gasser, U., Weeks, E.R., Schofield, A., Pusey, P.N., Weitz, D.A.: Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001)CrossRefGoogle Scholar
  36. 36.
    Trudu, F., Donadio, D., Parrinello, M.: Freezing of a Lennard-Jones fluid: from nucleation to spinodal regime. Phys. Rev. Lett. 97, 105701 (2006)CrossRefGoogle Scholar
  37. 37.
    Klein, W., Leyvraz, F.: Crystalline nucleation in deeply quenched liquids. Phys. Rev. Lett. 57, 2845–2848 (1986)CrossRefGoogle Scholar
  38. 38.
    Yang, J.X., Gould, H., Klein, W.: Molecular-dynamics investigation of deeply quenched liquids. Phys. Rev. Lett. 60, 2665–2668 (1988)CrossRefGoogle Scholar
  39. 39.
    Klein, W., Gould, H., Tobochnik, J., Alexander, F.J., Anghel, M., Johnson, G.: Clusters and fluctuations at mean-field critical points and spinodals. Phys. Rev. Lett. 85, 1270–1273 (2000)CrossRefGoogle Scholar
  40. 40.
    Mendez-Villuendas, E., Bowles, R.K.: Surface nucleation in the freezing of gold nanoparticles. Phys. Rev. Lett. 98, 185503 (2007)CrossRefGoogle Scholar
  41. 41.
    Chushak, Y.G., Bartell, L.S.: Freezing of Ni-Al bimetallic nanoclusters in computer simulations. J. Phys. Chem. B 107, 3747–3751 (2003)CrossRefGoogle Scholar
  42. 42.
    Lynden-Bell, R.M., Wales, D.J.: Free-energy barriers to melting in atomic clusters. J. Chem. Phys. 101, 1460–1476 (1994)CrossRefGoogle Scholar
  43. 43.
    Nielsen, O.H., Sethna, J.P., Stoltze, P., Jacobsen, K.W., Norskov, J.K.: Melting a copper cluster: critical-droplet theory. Europhys. Lett. 26, 51–56 (1994)CrossRefGoogle Scholar
  44. 44.
    Schmidt, M., Kusche, R., Hippler, T., Donges, J., Kronmüller, W., von Issendorff, B., Haberland, H.: Negative heat capacity for a cluster of 147 sodium atoms. Phys. Rev. Lett. 86, 1191–1194 (2001)CrossRefGoogle Scholar
  45. 45.
    Lee, J.G., Mori, H.: Solid/liquid two phase structures in isolated nanometer-sized alloy particles. Phys. Rev. B 70, 144105 (2004)CrossRefGoogle Scholar
  46. 46.
    Pochon, S., Mac Donald, K.F., Knize, R.J., Zheludev, N.I.: Phase coexistence in gallium nanoparticles controlled by electron excitation. Phys. Rev. Lett. 92, 145702 (2004)CrossRefGoogle Scholar
  47. 47.
    Schebarchov, D., Hendy, S.C.: Superheating and solid–liquid phase coexistence in nanoparticles with nonmelting surfaces. Phys. Rev. Lett. 96, 256101 (2006)CrossRefGoogle Scholar
  48. 48.
    Delogu, F.: Coupling of structural and energetic fluctuations in Co nanometer-sized particles. Nanotechnology 17, 2027–2031 (2006)CrossRefGoogle Scholar
  49. 49.
    Lümmen, N., Kraska, T.: Solidification kinetics of Fe05Pt05 clusters in an Ar carrier gas: molecular dynamics simulations. Phys. Rev. B 77, 045425 (2008)CrossRefGoogle Scholar
  50. 50.
    Hendy, S.C.: Stability of phase coexistence in atomic clusters. Phys. Rev. B 71, 115404 (2005)CrossRefGoogle Scholar
  51. 51.
    Baletto, F., Mottet, C., Ferrando, R.: Freezing of silver nanodroplets. Chem. Phys. Lett. 354, 82–87 (2002)CrossRefGoogle Scholar
  52. 52.
    Doye, J.P.K., Calvo, F.: Entropic effects on the size dependence of cluster structure. Phys. Rev. Lett. 86, 3570–3573 (2001)CrossRefGoogle Scholar
  53. 53.
    Tian, Z.-A., Liu, R.-S., Peng, P., Hou, Z.-Y., Liu, H.-R., Zheng, C.-X., Dong, K.-J., Yu, A.-B.: Freezing structures of silver nanodroplets: a molecular dynamics simulation study. Phys. Lett. A 373, 1667–1671 (2009)CrossRefGoogle Scholar
  54. 54.
    Shibuta, Y., Suzuki, T.: A molecular dynamics study of the phase transition in bcc metal nanoparticles. J. Chem. Phys. 129, 144102 (2008)CrossRefGoogle Scholar
  55. 55.
    Aguado, A., Jarrold, M.F.: Melting and freezing of metal clusters. Annu. Rev. Phys. Chem. 62, 151–172 (2011)CrossRefGoogle Scholar
  56. 56.
    Ge, R., Clapp, P.C., Rifkin, J.A.: Molecular dynamics of a molten Cu droplet spreading on a cold Cu substrate. Surf. Sci. 426, L413–L419 (1999)CrossRefGoogle Scholar
  57. 57.
    Arcidiacono, S., Walther, J.H., Poulikakos, D., Passerone, D., Koumoutsakos, P.: Solidification of gold nanoparticles in carbon nanotubes. Phys. Rev. Lett. 94, 105502 (2005)CrossRefGoogle Scholar
  58. 58.
    Shi, R., Shao, J., Zhu, X., Lu, X.: On the melting and freezing of Au-Pt nanoparticles confined in single-walled carbon nanotubes. J. Phys. Chem. C 115, 2961–2968 (2011)CrossRefGoogle Scholar
  59. 59.
    Johnson, W.L.: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986)CrossRefGoogle Scholar
  60. 60.
    Allen, M.P., Tildesley, J.: Computer Simulation of Liquids. Oxford Science, Oxford (1989)Google Scholar
  61. 61.
    Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (1995)Google Scholar
  62. 62.
    Frenkel, D., Smit, B.: Understanding Molecular Dynamics Simulation: From Algorithms to Application. Academic, London (1996)Google Scholar
  63. 63.
    Dehoff, R.T.: Thermodynamics in Materials Science. McGraw-Hill, New York, NY (1993)Google Scholar
  64. 64.
    Adelman, S.A., Doll, J.D.: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375–2388 (1976)CrossRefGoogle Scholar
  65. 65.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Di Nola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)CrossRefGoogle Scholar
  66. 66.
    Nosè, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)CrossRefGoogle Scholar
  67. 67.
    Nosè, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)CrossRefGoogle Scholar
  68. 68.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)CrossRefGoogle Scholar
  69. 69.
    Rohsenow, W.M., Hartnett, J.P., Cho, Y.I.: Handbook of Heat Transfer, 3rd edn. McGraw-Hill, New York, NY (1998)Google Scholar
  70. 70.
    Westergren, J., Gronbeck, H., Kim, S.-G., Tomanek, D.: Noble gas temperature control of metal clusters: a molecular dynamics study. J. Chem. Phys. 107, 3071–3079 (1997)CrossRefGoogle Scholar
  71. 71.
    Westergren, J., Gronbeck, H., Rosen, A., Nordholm, S.: Statistical theory of cluster cooling in rare gas. I. Energy transfer analysis for palladium clusters in helium. J. Chem. Phys. 109, 9848–9858 (1998)CrossRefGoogle Scholar
  72. 72.
    Edelstein, A.S., Cammarata, R.C. (eds.): Nanomaterials: Synthesis, Properties and Applications. Taylor and Francis Group, Oxford (1996)Google Scholar
  73. 73.
    Cao, G.: Nanostructures and Nanomaterials. Imperial College Press, London (2004)CrossRefGoogle Scholar
  74. 74.
    Rao, C.N.R., Muller, A., Cheetham, A.K. (eds.): The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Wiley-VCH Verlag, Berlin (2005)Google Scholar
  75. 75.
    Cottancin, E., Lermè, J., Gaudry, M., Pellarin, M., Vialle, J.-L., Broyer, M., Prevel, B., Treilleux, M., Melinon, P.: Size effects in the optical properties of AunAgn embedded clusters. Phys. Rev. B 62, 5179–5185 (2000)CrossRefGoogle Scholar
  76. 76.
    Reinhard, D., Hall, B.D., Ugarte, D., Monot, R.: Size-independent fcc-to-icosahedral structural transition in unsupported silver clusters: an electron diffraction study of clusters produced by inert-gas aggregation. Phys. Rev. B 55, 7868–7881 (1997)CrossRefGoogle Scholar
  77. 77.
    Koga, K., Sugawara, K.: Population statistics of gold nanoparticle morphologies: direct determination by HREM observations. Surf. Sci. 529, 23–35 (2003)CrossRefGoogle Scholar
  78. 78.
    Dodson, B.W.: Atomistic simulation of silicon beam deposition. Phys. Rev. B 36, 1068–1074 (1987)CrossRefGoogle Scholar
  79. 79.
    Brandes, E.A., Brook, G.B. (eds.): Smithells Metals Reference Handbook, 7th edn. Butterworth-Heinemann, Oxford (1992)Google Scholar
  80. 80.
    Cleri, F., Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993)CrossRefGoogle Scholar
  81. 81.
    Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980)CrossRefGoogle Scholar
  82. 82.
    Delogu, F.: A numerical study of the melting behavior of Au nanotubes. Phys. Rev. B 75, 235421 (2007)CrossRefGoogle Scholar
  83. 83.
    Morris, J.R.: Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 66, 144104 (2002)CrossRefGoogle Scholar
  84. 84.
    Morris, J.R., Song, X.: The melting lines of model systems calculated from coexistence simulations. J. Chem. Phys. 116, 9352–9358 (2002)CrossRefGoogle Scholar
  85. 85.
    Pollack, G.L.: Extension of the low of corresponding-states to rare-gas solids. Phys. Rev. A 2, 38–42 (1970)CrossRefGoogle Scholar
  86. 86.
    Munster, A.: Statistical Thermodynamics. Springer, Berlin (1974)Google Scholar
  87. 87.
    Steinhardt, P.L., Nelson, D.R., Ronchetti, M.: Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983)CrossRefGoogle Scholar
  88. 88.
    Auer, S., Frenkel, D.: Numerical prediction of absolute crystallization rates in hard-sphere colloids. J. Chem. Phys. 120, 3015–3030 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Meccanica, Chimica, e dei MaterialiUniversità degli Studi di CagliariCagliariItaly

Personalised recommendations