Skip to main content

The Botulinum Neurotoxin Complex and the Role of Ancillary Proteins

  • Chapter
  • First Online:
Molecular Aspects of Botulinum Neurotoxin

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 4))

Abstract

All seven known serotypes of botulinum neurotoxin (BoNT) are produced in the form of a complex with a group of neurotoxin-associated proteins (NAPs). The BoNT complex is encoded by a gene cluster regulated by its own transcription factor, and the proteins coded by polycistronic messenger ribonucleic acid (mRNA) self-assemble into complexes of 300–900 kDa. Types A, B, C, D, and G complexes contain hemagglutinin (HA), whereas types E and F complexes do not contain HA. Sequence homology among respective BoNTs and NAPs range from 55.3 to 98.5 %, and all the proteins in the BoNT complex belong to a stable class of protein with high longevity inside mammalian cells. A new 250-kDa protein (P-250) with high immunogenicity has been identified in the BoNT/A complex which is not part of the neurotoxin gene cluster. The 33-kDa hemagglutinin (HA-33) is the most abundant NAP. The HA-33 is protease resistant and is highly immunogenic. HA-33 appears to play an important role in the translocation of the neurotoxin across the gut wall, enhancing the endopeptidase activity of BoNT and protection of BoNT against proteases. The role of other NAPs is not as clear, and their role in the biology of the bacteria is not understood at all. BoNT complexes are used as therapeutic product, although a therapeutic product without NAPs appears to retain the properties of the complex-based products. NAPs in therapeutic products may have other subtle long-term effects which need to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahnert-Hilger G, Bigalke H (1995) Molecular aspects of tetanus and botulinum neurotoxin poisoning. Prog Neurobiol 46:83–96

    CAS  PubMed  Google Scholar 

  2. Arnon SS, Schechter R, Ingelsby TV, Henderson DA, Bartlett DA, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070

    Google Scholar 

  3. Bachmair A, Finley D et al (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186

    CAS  PubMed  Google Scholar 

  4. Bhandari M, Campbell KD, Collins MD, East AK (1997) Molecular characterization of the clusters of genes encoding the botulinum neurotoxin complex in clostridium botulinum (Clostridium argentinense) type G and nonproteolytic Clostridium botulinum type B. Curr Microbiol 35:207–214

    CAS  PubMed  Google Scholar 

  5. Boroff DA, Townend R, Fleck U, DasGupta BR (1966) Ultracentrifugal analysis of the crystalline toxin and isolated fractions of Clostridium botulinum type A. J Biol Chem 241:5165–5167

    CAS  PubMed  Google Scholar 

  6. Boroff DA, Dasgupta BR, Fleck US (1968) Homogeneity and molecular weight of toxin of Clostridium botulinum type B. J Bacteriol 95:1738–1744

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Brandau DT, Joshi SB, Smalter AM, Kim S, Steadman B, Middaugh CR (2007) Stability of the Clostridium botulinum type A neurotoxin complex: an empirical phase diagram based approach. Mol Pharm 4:571–582

    CAS  PubMed  Google Scholar 

  8. Cai S, Singh BR (2001) Role of the disulfide cleavage induced molten globule state of type A botulinum neurotoxin in its endopeptidase activity. Biochemistry 50:15327–15333

    Google Scholar 

  9. Cai S, Sarkar HK, Singh BR (1999) Enhancement of the endopeptidase activity of botulinum neurotoxin by its associated proteins and dithiothreitol. Biochemistry 38:6903–6910

    CAS  PubMed  Google Scholar 

  10. Callaway JE (2004) Botulinum toxin type B (Myobloc): pharmacology and biochemistry. Clin Dermatol 22:23–28

    PubMed  Google Scholar 

  11. Carli L, Montecucco C, Rossetto O (2009) Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve 40:374–380

    CAS  PubMed  Google Scholar 

  12. Carpusca I, Jank T et al (2006) Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases. Mol Microbiol 62:621–630

    CAS  PubMed  Google Scholar 

  13. Chang TW (2011) Sequence Analyses & Novel Antidotes Development of Botulinum Neurotoxin. Ph. D. Dissertation, University of Massachusetts Dartmouth, Dartmouth, MA

    Google Scholar 

  14. Christensen H, Pain RH (1991) Molten globule intermediates and protein folding. Eur Biophys J 19:221–229

    CAS  PubMed  Google Scholar 

  15. Ciechanover A, Schwartz AL (1989) How are substrates recognized by the ubiquitin-mediated proteolytic system? Trends Biochem Sci 14:483–488

    CAS  PubMed  Google Scholar 

  16. Collins MD, East AK (1998) Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84:5–17

    CAS  PubMed  Google Scholar 

  17. Cordoba JJ, Collins MD et al (1995) Studies on the genes encoding botulinum neurotoxin type A of Clostridium botulinum from a variety of sources. Syst Appl Microbiol 18:13–22

    CAS  Google Scholar 

  18. DasGupta BR, Boroff DA (1968) Separation of toxin and hemagglutinin from crystalline toxin of Clostridium botulinum type A by anion exchange chromatography and determination of their dimensions by gel filtration. J Biol Chem 243:1065–1072

    CAS  PubMed  Google Scholar 

  19. DasGupta BR, Boroff DA, Rothstein E (1966) Chromatographic fractionation of the crystalline toxin of Clostridium botulinum type A. Biochem Biophys Res Commun 22:750–756

    CAS  PubMed  Google Scholar 

  20. Dineen SS, Bradshaw M, Johnson EA (2003) Neurotoxin Gene Clusters in Clostridium botulinum Type A Strains: sequence comparison and evolutionary implications. Curr Microbiol 46:345–352

    CAS  PubMed  Google Scholar 

  21. Dressler D, Benecke R (2002) Initial experiences with clinical use of botulinum toxin type B. Nervenarzt 73:194–198

    CAS  PubMed  Google Scholar 

  22. East AK, Collins MD (1994) Conserved structure of genes encoding components of the botulinum neurotoxin complex M and the sequence of the gene encoding for the nontoxic component in nonproteolytic Clostridium botulinum type F. Curr Microbiol 29:69–77

    CAS  PubMed  Google Scholar 

  23. East AK, Bhandari M, Stacey JM, Campbell KD, Collins MD (1996) Organization and phylogenetic interrelationships of genes encoding components of the botulinum toxin complex in proteolytic Clostridium botulinum types A, B, and F: evidence of chimeric sequences in the gene encoding the nontoxic nonhemagglutinin component. Int J Syst Bacteriol 46:1105–1112

    CAS  PubMed  Google Scholar 

  24. East AK, Bhandari M, Hielm S, Collins MD (1998) Analysis of the botulinum neurotoxin type F gene clusters in proteolytic and nonproteolytic Clostridium botulinum and Clostridium barati. Curr Microbiol 37:262–268

    CAS  PubMed  Google Scholar 

  25. Eisele KH, Fink K, Vey M, Taylor HV (2011) Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 57:555–565

    CAS  PubMed  Google Scholar 

  26. Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C (2004) Different types of botulinum toxin in humans. Mov Disord 19:S53–S59

    PubMed  Google Scholar 

  27. Ferrer-Montiel AV, Canaves JM, DasGupta BR, Wilson MC, Montal M (1996) Tyrosine phosphorylation modulates the activity of Clostridial neurotoxins. J Biol Chem 271:18322–18325

    CAS  PubMed  Google Scholar 

  28. Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278:1363–1371

    CAS  PubMed  Google Scholar 

  29. Frevert J, Dressler D (2010) Complexing proteins in botulinum toxin type A drugs: a help or a hindrance? Biologics 4:325–332

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fu FN, Sharma SK et al (1998) A protease-resistant novel hemagglutinin purified from type A Clostridium botulinum. J Protein Chem 17(1):53–60

    CAS  PubMed  Google Scholar 

  31. Fujii N (1995) Structure and function of botulinum toxin. Hokkaido Igaku Zasshi 70:19–28

    CAS  PubMed  Google Scholar 

  32. Fujinaga Y (2010) Interaction of botulinum toxin with the epithelial barrier. J Biomed Biotechnol 2010:974943

    Google Scholar 

  33. Fujinaga Y, Inoue K et al (1994) Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205(2):1291–1298

    CAS  PubMed  Google Scholar 

  34. Fujinaga Y, Inoue K, Watanabe S, Yokota K, Hirai Y, Nagamachi E, Oguma K (1997) The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143:3841–3847

    CAS  PubMed  Google Scholar 

  35. Fujinaga Y, Inoue K, Nomura T, Sasaki J, Marvaud JC, Popoff MR, Kozaki S, Oguma K (2000) Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467:179–183

    CAS  PubMed  Google Scholar 

  36. Fujinaga Y, Inoue K, Watarai S, Sakaguchi Y, Arimitsu H, Lee JC, Jin Y, Matsumura T, Kabumoto Y, Watanabe T, Ohyama T, Nishikawa A, Oguma K (2004) Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 150:1529–1538

    CAS  PubMed  Google Scholar 

  37. Fujita R, Fujinaga Y et al (1995) Molecular characterization of two forms of nontoxic-nonhemagglutinin components of Clostridium botulinum type A progenitor toxins. FEBS Lett 376:41–44

    CAS  PubMed  Google Scholar 

  38. Grein S, Mander GJ, Fink K (2011) Stability of botulinum neurotoxin type A, devoid of complexing proteins. The Botulinum J 2:49–58

    Google Scholar 

  39. Gu S, Rumpel S, Zhou J, Bigalke H, Rummel A, Jin R (2011) The structure of botulinum neurotoxin under its bioshield. 7th International Conference on Basic and Therapeutic Aspects of botulinum and Tetanus Toxins, Santa Fe, NM, October 2–5, 2011

    Google Scholar 

  40. Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    CAS  PubMed  Google Scholar 

  41. Hambleton P (1992) Clostridium botulinum toxins: a general review of involvement in disease, structure, mode of action and preparation for clinical use. J Neurol 239:16–20

    CAS  PubMed  Google Scholar 

  42. Hanson MA, Stevens RC (2000) Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution. Nature Struct Biol 7:687–690

    CAS  PubMed  Google Scholar 

  43. Hasegawa K, Watanabe T, Suzuki T, Yamano A, Oikawa T, Sato Y, Kouguchi H, Yoneyama T, Niwa K, Ikeda T, Ohyama T (2007) A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms. J Biol Chem 282:24777–24783

    CAS  PubMed  Google Scholar 

  44. Hauser D, Gibert M, Marvaud JC, Eklund MW, Popoff MR (1994) Organization of the botulinum neurotoxin C1 gene and its associated non-toxic protein genes in Clostridium botulinum C 468. Mol Gen Genet 243:631–640

    CAS  PubMed  Google Scholar 

  45. Henderson I, Whelan SM, Davis TO, Minton NP (1996) Genetic characterization of the botulinum toxin complex of Clostridium botulinum strain NCTC2916. FEMS Microbiol Lett 140:151–158

    CAS  PubMed  Google Scholar 

  46. Hutson RA, Collins MD, East AK, Thompson DE (1994) Nucleotide sequence of the gene coding for non-proteolytic Clostridium botulinum type B neurotoxin: comparison with other colstridial neurotoxins. Curr Microbiol 28:101–110

    CAS  PubMed  Google Scholar 

  47. Ibanez C, Blanes-Mira C, Ferna’ndez-Ballester G, Planells-Cases R, Ferrer-Montiel A (2004) Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. FEBS Lett. 578:121–127

    CAS  PubMed  Google Scholar 

  48. Inoue K, Fujinaga Y, Watanabe T, Ohyama T, Takeshi K, Moriishi K, Nakajima H, Inoue K, Oguma K (1996) Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64:1589–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Inoue K, Fujinaga Y, Honke K, Yokota K, Ikeda T, Ohyama T, Takeshi K, Watanabe T, Inoue K, Oguma K (1999) Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1). Microbiology 145:2533–4252

    CAS  PubMed  Google Scholar 

  50. Inoue K, Fujinaga Y, Honke K, Arimitsu H, Mahmut N, Sakaguchi Y, Ohyama T, Watanabe T, Inoue K, Oguma K (2001) Clostridium botulinum type A haemagglutinin-positive progenitor toxin (HA(+)-PTX) binds to oligosaccharides containing Gal beta1–4GlcNAc through one subcomponent of haemagglutinin (HA1). Microbiology 147:811–819

    CAS  PubMed  Google Scholar 

  51. Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 136:1239–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett. 456:137–142

    CAS  PubMed  Google Scholar 

  53. Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G, Connerton I, Matthews S (1999) Structure of cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat Struct Biol 6:313–318

    CAS  PubMed  Google Scholar 

  54. Kim EJ, Ramirez AL et al (2003) The role of botulinum toxin type B (Myobloc) in the treatment of hyperkinetic facial lines. Plast Reconstr Surg 112(5 Suppl):88S–93S; discussion 94S–97S.

    Google Scholar 

  55. Kouguchi H, Watanabe T et al (2002). In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. J Biol Chem 277(4):2650–2656

    CAS  PubMed  Google Scholar 

  56. Kukreja R, SinghBR (2005) Biologically active novel conformational state of botulinum, the most poisonous poison. J Biol Chem 280:39346–39352

    CAS  PubMed  Google Scholar 

  57. Kukreja R, Singh BR (2007) Comparative Role of Neurotoxin-Associated Proteins in the Structural Stability and Endopeptidase Activity of Botulinum Neurotoxin Complex Types A and E. Biochemistry. 46:14316–14324

    CAS  PubMed  Google Scholar 

  58. Kukreja K, Chang TZ, Cai S, Lindo P, Riding S, Zhou Y, Ravichandran R, Singh BR (2009) Immunological characterization of the Subunits of Type A Botulinum Neurotoxin and Different Components of its Associated Proteins. Toxicon 53:616–624

    CAS  PubMed  Google Scholar 

  59. Kukreja RV, Sharma SK, Singh BR (2010) Molecular basis of activation of endopeptidase activity of botulinum neurotoxin type E. Biochemistry 49:2510–2519

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291:1091–1104

    CAS  PubMed  Google Scholar 

  61. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    CAS  PubMed  Google Scholar 

  62. Lamanna C, McElroy OE et al (1946) The Purification and Crystallization of Clostridium botulinum Type A Toxin. Science 103:613–614

    CAS  Google Scholar 

  63. Lang AM (2003) Botulinum toxin type A therapy in chronic pain disorders. Arch Phys Med Rehabil 84(3 Suppl 1):S69–73; quiz S74–65

    Google Scholar 

  64. Long H, Crean CD, Lee WH, Cummings OW, Gabig TG (2001) Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer research 61:7878–7881

    Google Scholar 

  65. Li L, Singh BR (1999) Structure-function relationship of clostridial neurotoxins. J Toxicol-Toxin Rev 18:95–112

    CAS  Google Scholar 

  66. Li B, Qian X, Sarkar HK, Singh BR (1998) Molecular characterization of type E C. botulinum and comparison with other types of Clostridium botulinum. Biochim Biophys Acta 1395:21–27

    CAS  PubMed  Google Scholar 

  67. Lietzow MA, Gielow ET, Le D, Zhang J, Verhagen MF (2008) Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J 27:420–425

    Google Scholar 

  68. Lietzow MA, Gielow ET, Le D, Zhang J, Verhagen MF (2009) Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J 28:250–251

    CAS  Google Scholar 

  69. Lin G, Tepp WH, Pier CL, Jacobson MJ, Johnson EA (2010) Expression of the Clostridium botulinum A2 neurotoxin gene cluster proteins and characterization of the A2 complex. Appl Environ Microbiol 76:40–47

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Mahmut N, Inoue K, Fujinaga Y, Hughes L, Arimitsu H, Sakaguchi Y, Ohtsuka A, Murakami T, Yokota K, Oguma K (2002) Characterisation of monoclonal antibodies against haemagglutinin associated with Clostridium botulinum type C neurotoxin. J Med Microbiol 51:286–294

    CAS  PubMed  Google Scholar 

  71. Matsumoto Y, Nakano T et al (2008) Distribution of cytotoxic and DNA ADP-ribosylating activity in crude extracts from butterflies among the family Pieridae. Proc Natl Acad Sci U S A 105(7):2516–2520

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Mutoh S, Suzuki T, Hasegawa K, Nakazawa Y, Kouguchi H, Sagane Y, Niwa K, Watanabe T, Ohyama T (2005) Four molecules of the 33 kDa haemagglutinin component of the Clostridium botulinum serotype C and D toxin complexes are required to aggregate erythrocytes. Microbiology 151:3847–3858

    CAS  PubMed  Google Scholar 

  73. Nakagawa SH, Tager HS (1993) Importance of main-chain flexibility and the insulin fold in insulin-receptor interactions. Biochemistry 3:7237–7243

    Google Scholar 

  74. Nishikawa A, Uotsu D et al (2004). The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells. Biochem Biophys Res Commun 319(2):327–333

    CAS  PubMed  Google Scholar 

  75. Nukina M, Mochida Y, Sakaguchi S, Sakaguchi G (1991) Difficulties of molecular dissociation of Clostridium botulinum type G progenitor toxin. FEMS Microbiol Lett. 63:165–170

    CAS  PubMed  Google Scholar 

  76. Oguma K, Inoue K, Fujinaga Y, Yokota K, Watanabe T, Ohyama T, Takeshi K, Inoue K (1999) Structure and function of Clostridium botulinum progenitor toxin. J Toxicol—Toxin Reviews 18:17–34

    Google Scholar 

  77. Ohishi I, Sugii S, Sakaguchi G (1977) Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect Immun 16:107–109

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Panicker JN, Muthane JB (2003) Botulinum toxins: pharmacology and its current therapeutic evidence for use. Neurol India 51(4):455–460

    CAS  PubMed  Google Scholar 

  79. Pickett A (2010) Re-engineering clostridial neurotoxins for the treatment of chronic pain: current status and future prospects. BioDrugs 24(3):173–182

    CAS  PubMed  Google Scholar 

  80. Pickett A, Perrow K (2009) Composition and molecular size of Clostridium botulinum Type A toxin–hemagglutinin complex. Protein J 28:248–249

    CAS  PubMed  Google Scholar 

  81. Poulain B, Popoff MR et al (2008) How do botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. The Botulinum J 1:14–87

    Google Scholar 

  82. Raffestin S, Marvaud JC, Cerrato R, Dupuy B, Popoff M (2004) Organization and regulation of neurotoxin genes in Clostridium botulinum and Clostridium tetani. Anaerobe 10:93–100

    Google Scholar 

  83. Raffestin S, Dupuy B, Marvaud JC, Popoff MR (2005) Bot R/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol Microbiol 55: 235–249

    Google Scholar 

  84. Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Meth Enzymol

    Google Scholar 

  85. Rodriguez JM, Collins MD, East AK (1998) Gene organization and sequence determination of the two botulinum neurotoxin gene clusters in Clostridium botulinum type A(B) strain NCTC 2916 Curr Microbiol 36:226–231

    Google Scholar 

  86. Rothwell A (2010) Clostridium perfringens: a flesh-eating bacterium living in your garden. J Perioper Pract 20:376–378

    PubMed  Google Scholar 

  87. Sagane Y, Kouguchi H, Watanabe T, Sunagawa H, Inoue K, Fujinaga Y, Oguma K, Ohyama T (2001) Role of C-terminal region of HA-33 component of botulinum toxin in hemagglutination. Biochem Biophys Res Commun 288:650–657

    CAS  PubMed  Google Scholar 

  88. Sagane Y, Watanabe T, Kouguchi H et al (2002) Spontaneous nicking in the nontoxic– nonhemagglutinin component of the Clostridium botulinum toxin complex. Biochem Biophys Res Commun 292:434–440

    CAS  PubMed  Google Scholar 

  89. Sakaguchi G (1983) Clostridium botulinum toxins. Pharmacol Ther 19:165–194

    CAS  Google Scholar 

  90. Schantz EJ, Johnson EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56:80–99

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Sebaihia M, Peck MW et al (2007). Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17:1082–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Shaĭtan KV, Mukovskiĭ A, Beliakov AA, Saraĭkin SS (2000) Statistical distribution of dipeptides in protein structures and dynamic characteristics of some protein fragments (the article in Russian). Biofizika 45:399–406

    PubMed  Google Scholar 

  93. Sharma SK, Singh BR (1998) Hemagglutinin binding protection of botulinum neurotoxin from proteolysis. J Natural Toxins 7:239–253

    CAS  Google Scholar 

  94. Sharma SK, Singh BR (2000) Immunological Properties of Hn-33 purified from Type A Clostridium botulinum. J Nat Toxin 9:357–362

    CAS  Google Scholar 

  95. Sharma SK, Singh BR (2004) Enhancement of the Endopeptidase Activity of Purified Botulinum Neurotoxins A and E by an Isolated Component of the Native Neurotoxin Associated Proteins, Biochemistry 43:4791–4798

    CAS  PubMed  Google Scholar 

  96. Sharma SK, Fu FN, Singh BR (1999) Molecular properties of a hemagglutinin purified from type A botulinum neurotoxin complex. J Protein Chem 18:29–38

    PubMed  Google Scholar 

  97. Sharma SK, Ramzan MA, Singh BR (2003) Separation of the Components of Type A Botulinum Neurotoxin Complex by Electrophoresis. Toxicon 41:321–331

    CAS  PubMed  Google Scholar 

  98. Singh BR (2000) Intimate details of the most poisonous poison. Nature Struct Biol 7:617–619

    CAS  PubMed  Google Scholar 

  99. Singh BR, Zhang Z (2004) Novel proteins within the type E botulinum neurotoxin complex. U.S. Patent No. 6,699,966 (March 2, 2004)

    Google Scholar 

  100. Singh BR, Li B et al (1995) Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon 33(12):1541–1547

    CAS  PubMed  Google Scholar 

  101. Singh BR, Foley J, Lafontaine C (1995a) Physico-chemical characterization of the botulinum neurotoxin binding protein from type E botulinum producing Clostridium botulinum. J Protein Chem 14:7–18

    CAS  Google Scholar 

  102. Somers, E, DasGupta BR (1991) Clostridium botulinum types A, B, C1, and E produce proteins with or without hemagglutinating activity: do they share common amino acid sequences and genes? J Protein Chem 10(4):415–425

    CAS  PubMed  Google Scholar 

  103. Stone HF, Zhu Z, Thach TQ, Ruegg CL (2011) Characterization of diffusion and duration of action of a new botulinum toxin type A formulation. Toxicon 58:159–167

    CAS  PubMed  Google Scholar 

  104. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    CAS  PubMed  Google Scholar 

  105. Swaminathan S, Eswaramoorthy S, Kumaran D (2004) Structure and enzymatic activity of botulinum neurotoxins. Mov Disord 19:S17–S22

    PubMed  Google Scholar 

  106. Suzuki T, Watanabe T, Mutoh S, Hasegawa K, Kouguchi H, Sagane Y, Fujinaga Y, Oguma K, Ohyama T (2005) Characterization of the interaction between subunits of the botulinum toxin complex produced by serotype D through tryptic susceptibility of the isolated components and complex forms. Microbiology 151:1475–1483

    CAS  PubMed  Google Scholar 

  107. Tang-Liu DD, Aoki KR, Dolly JO, de Paiva A, Houchen TL, Chasseaud LF, Webber C (2003) Intramuscular injection of 125I-botulinum neurotoxin-complex versus 125I-botulinum-free neurotoxin: time course of tissue distribution. Toxicon 42:461–469

    CAS  PubMed  Google Scholar 

  108. Thirunavukkarasu N, Ghosal KJ, Kukreja R, Zhou Y, Dombkowski A, Cai S, Singh BR (2011) Microarray analysis of differentially regulated genes in human neuronal and epithelial cell lines upon exposure to type A botulinum neurotoxin. Biochem Biophys Res Commun 405:684–690

    Google Scholar 

  109. Tobias JW, Shrader TE et al (1991) The N-end rule in bacteria. Science 254(5036):1374–1377

    CAS  PubMed  Google Scholar 

  110. Tsuzuki K, Kimura K et al (1990) Cloning and complete nucleotide sequence of the gene for the main component of hemagglutinin produced by Clostridium botulinum type C. Infect Immun 58:3173–3177

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Tsuzuki K, Kimura K et al (1992) The complete nucleotide sequence of the gene coding for the nontoxic-nonhemagglutinin component of Clostridium botulinum type C progenitor toxin. Biochem Biophys Res Commun 183:1273–1279

    CAS  PubMed  Google Scholar 

  112. Villafranca JE, Robertus JD (1981). Ricin B chain is a product of gene duplication. J Biol Chem 256:554–556

    CAS  PubMed  Google Scholar 

  113. Wang L, Sun Y, Singh BR (2011) Effects of botulinum neurotoxins complexing proteins on lymphatic cells. 7th International Conference on Basic and Therapeutic Aspects of botulinum and Tetanus Toxins, Santa Fe, NM, October 2–5, 2011

    Google Scholar 

  114. Watanabe M, Koyama K et al (2001) Pierisin, an apoptosis-inducing protein from cabbage butterfly. Tanpakushitsu Kakusan Koso 46(4 Suppl):395–400

    CAS  PubMed  Google Scholar 

  115. Zhou Y, Foss S, Lindo P, Sarkar H, Singh BR (2005) Hemagglutinin-33 of type A botulinum neurotoxin complex binds with synaptotagmin II. FEBS Journal 272:2717–2726

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by grants and contracts from NIH and the Defense Threat Reduction Agency (DTRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bal Ram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Singh, B., Chang, TW., Kukreja, R., Cai, S. (2014). The Botulinum Neurotoxin Complex and the Role of Ancillary Proteins. In: Foster, K. (eds) Molecular Aspects of Botulinum Neurotoxin. Current Topics in Neurotoxicity, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9454-6_4

Download citation

Publish with us

Policies and ethics