Abstract
Parkinson’s disease (PD) patients have a number of functional hand impairments. The latency and rate of isometric force generation is impaired in PD. Motor dysfunction is also related to impaired integration of sensory feedback and motor output. Moreover, PD patients exhibit sensory deficits such as decreased spatial and temporal tactile discrimination thresholds of the fingertips. Impairments of reaching and grasping are seen as patients tend to exhibit difficulty in movement initiation to a target. There are deficits in hand preshaping to object geometry. There is a lack of coordination between the timing of the reach and grasp components. Patients have an overall dependence on visual cues to control movement. They exhibit impairments in the planning of where to place their digits, resulting in suboptimal performance of object manipulation. It is hypothesized that predictive force control deficits are a result of central impairments associated with the generation and/or retrieval of sensorimotor memories for movement planning.
Clinical aspects of hand function include resting, postural or internal tremor, bradykinesia, and rigidity. Elements of the unified Parkinson’s disease rating scale (UPDRS) are the best way to measure deficits in hand function. Choreiform dyskinesias and dystonia may interfere with hand function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rodriguez-Oroz MC, Lage PM, Sanchez-Mut J, Lamet I, Pagonabarraga J, Toledo JB, Garcia-Garcia D, Clavero P, Samaranch L, Irurzun C, Matsubara JM, Irigoien J, Bescos E, Kulisevsky J, Perez-Tur J, Obeso JA. Homocysteine and cognitive impairment in Parkinson’s disease: a biochemical, neuroimaging, and genetic study. Mov Disord. 2009;24:1437–44.
Rivlin-Etzion M, Marmor O, Heimer G, Raz A, Nini A, Bergman H. Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin Neurobiol. 2006;16:629–37.
Brown P, Marsden CD. Bradykinesia and impairment of EEG desynchronization in Parkinson’s disease. Mov Disord. 1999;14:423–9.
Benecke R, Rothwell JC, Dick JP, Day BL, Marsden CD. Disturbance of sequential movements in patients with Parkinson’s disease. Brain. 1987;110(Pt 2):361–79.
Flowers KA. Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain. 1976;99:269–310.
Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience. 2001;104:1027–41.
Poizner H, Feldman AG, Levin MF, Berkinblit MB, Hening WA, Patel A, Adamovich SV. The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson’s patients during reaching movements. Exp Brain Res. 2000;133:279–92.
Schettino LF, Adamovich SV, Hening W, Tunik E, Sage J, Poizner H. Hand preshaping in Parkinson’s disease: effects of visual feedback and medication state. Exp Brain Res. 2006;168:186–202.
Tunik E, Feldman AG, Poizner H. Dopamine replacement therapy does not restore the ability of parkinsonian patients to make rapid adjustments in motor strategies according to changing sensorimotor contexts. Parkinsonism Relat Disord. 2007;13:425–33.
Castiello U. The neuroscience of grasping. Nat Rev Neurosci. 2005;6:726–36.
Prodoehl J, Corcos DM, Vaillancourt DE. Basal ganglia mechanisms underlying precision grip force control. Neurosci Biobehav Rev. 2009;33:900–8.
Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex. 2005;15:913–20.
Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.
Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.
Nambu A, Yoshida S, Jinnai K. Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp Brain Res. 1988;71:658–62.
Holsapple JW, Preston JB, Strick PL. The origin of thalamic inputs to the “hand” representation in the primary motor cortex. J Neurosci. 1991;11:2644–54.
DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64:20–4.
Spraker MB, Yu H, Corcos DM, Vaillancourt DE. Role of individual basal ganglia nuclei in force amplitude generation. J Neurophysiol. 2007;98:821–34.
Vaillancourt DE, Yu H, Mayka MA, Corcos DM. Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage. 2007;36:793–803.
Stelmach GE, Worringham CJ. The preparation and production of isometric force in Parkinson’s disease. Neuropsychologia. 1988;26:93–103.
Jordan N, Sagar HJ, Cooper JA. A component analysis of the generation and release of isometric force in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1992;55:572–6.
Vaillancourt DE, Slifkin AB, Newell KM. Intermittency in the visual control of force in Parkinson’s disease. Exp Brain Res. 2001;138:118–27.
Mortimer JA, Webster DD. Evidence for a quantitative association between EMG stretch responses and parkinsonian rigidity. Brain Res. 1979;162:169–73.
Rothwell JC, Obeso JA, Traub MM, Marsden CD. The behaviour of the long-latency stretch reflex in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1983;46:35–44.
Cantello R, Tarletti R, Varrasi C, Cecchin M, Monaco F. Cortical inhibition in Parkinson’s disease: new insights from early, untreated patients. Neuroscience. 2007;150:64–71.
Dietz V, Hillesheimer W, Freund HJ. Correlation between tremor, voluntary contraction, and firing pattern of motor units in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1974;37:927–37.
Milner-Brown HS, Fisher MA, Weiner WJ. Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia. J Neurol Neurosurg Psychiatry. 1979;42:35–41.
Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain. 2001;124:2131–46.
Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73:820–35.
Sathian K, Zangaladze A, Green J, Vitek JL, DeLong MR. Tactile spatial acuity and roughness discrimination: impairments due to aging and Parkinson’s disease. Neurology. 1997;49:168–77.
Artieda J, Pastor MA, Lacruz F, Obeso JA. Temporal discrimination is abnormal in Parkinson’s disease. Brain. 1992;115(Pt 1):199–210.
Maschke M, Gomez CM, Tuite PJ, Konczak J. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain. 2003;126:2312–22.
Konczak J, Li KY, Tuite PJ, Poizner H. Haptic perception of object curvature in Parkinson’s disease. PLoS One. 2008;3:e2625.
Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, Volkmann J, Maschke M. Proprioception and motor control in Parkinson’s disease. J Mot Behav. 2009;41:543–52.
Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord. 2003;18:231–40.
Seiss E, Praamstra P, Hesse CW, Rickards H. Proprioceptive sensory function in Parkinson’s disease and Huntington’s disease: evidence from proprioception-related EEG potentials. Exp Brain Res. 2003;148:308–19.
Lee MS, Lyoo CH, Lee MJ, Sim J, Cho H, Choi YH. Impaired finger dexterity in patients with Parkinson’s disease correlates with discriminative cutaneous sensory dysfunction. Mov Disord. 2010;25:2531–5.
Nakamura R, Nagasaki H, Narabayashi H. Disturbances of rhythm formation in patients with Parkinson’s disease: part I. Characteristics of tapping response to the periodic signals. Percept Mot Skills. 1978;46:63–75.
Stegemoller EL, Simuni T, MacKinnon C. Effect of movement frequency on repetitive finger movements in patients with Parkinson’s disease. Mov Disord. 2009;24:1162–9.
Stelmach GE, Garcia-Colera A, Martin ZE. Force transition control within a movement sequence in Parkinson’s disease. J Neurol. 1989;236:406–10.
Frischer M. Voluntary vs autonomous control of repetitive finger tapping in a patient with Parkinson’s disease. Neuropsychologia. 1989;27:1261–6.
O’Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain. 1996;119(Pt 1):51–70.
Quencer K, Okun MS, Crucian G, Fernandez HH, Skidmore F, Heilman KM. Limb-kinetic apraxia in Parkinson disease. Neurology. 2007;68:150–1.
Gebhardt A, Vanbellingen T, Baronti F, Kersten B, Bohlhalter S. Poor dopaminergic response of impaired dexterity in Parkinson’s disease: bradykinesia or limb kinetic apraxia? Mov Disord. 2008;23:1701–6.
Stewart KC, Fernandez HH, Okun MS, Alberts JL, Malaty IA, Rodriguez RL, Hass CJ. Effects of dopaminergic medication on objective tasks of deftness, bradykinesia and force control. J Neurol. 2009;256:2030–5.
Stegemoller EL, Allen DP, Simuni T, MacKinnon CD. Rate-dependent impairments in repetitive finger movements in patients with Parkinson’s disease are not due to peripheral fatigue. Neurosci Lett. 2010;482:1–6.
Stelmach GE, Worringham CJ, Strand EA. Movement preparation in Parkinson’s disease. The use of advance information. Brain. 1986;109(Pt 6):1179–94.
Jahanshahi M, Brown RG, Marsden CD. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain. 1992;115(Pt 2):539–64.
Desmurget M, Grafton ST, Vindras P, Grea H, Turner RS. Basal ganglia network mediates the control of movement amplitude. Exp Brain Res. 2003;153:197–209.
Santello M, Soechting JF. Gradual molding of the hand to object contours. J Neurophysiol. 1998;79:1307–20.
Winges SA, Weber DJ, Santello M. The role of vision on hand preshaping during reach to grasp. Exp Brain Res. 2003;152:489–98.
Schettino LF, Rajaraman V, Jack D, Adamovich SV, Sage J, Poizner H. Deficits in the evolution of hand preshaping in Parkinson’s disease. Neuropsychologia. 2004;42:82–94.
Ansuini C, Begliomini C, Ferrari T, Castiello U. Testing the effects of end-goal during reach-to-grasp movements in Parkinson’s disease. Brain Cogn. 2010;74:169–77.
Jackson SR, Jackson GM, Harrison J, Henderson L, Kennard C. The internal control of action and Parkinson’s disease: a kinematic analysis of visually-guided and memory-guided prehension movements. Exp Brain Res. 1995;105:147–62.
Alberts JL, Tresilian JR, Stelmach GE. The co-ordination and phasing of a bilateral prehension task. The influence of Parkinson’s disease. Brain. 1998;121(Pt 4):725–42.
Rand MK, Smiley-Oyen AL, Shimansky YP, Bloedel JR, Stelmach GE. Control of aperture closure during reach-to-grasp movements in Parkinson’s disease. Exp Brain Res. 1996;168:131–42.
Jackson GM, Jackson SR, Hindle JV. The control of bimanual reach-to-grasp movements in hemiparkinsonian patients. Exp Brain Res. 2000;132:390–8.
Negrotti A, Secchi C, Gentilucci M. Effects of disease progression and L-dopa therapy on the control of reaching-grasping in Parkinson’s disease. Neuropsychologia. 2005;43:450–9.
Castiello U, Bennett KM, Scarpa M. The reach to grasp movement of Parkinson’s disease subjects. In: Bennett KM, Castiello U, editors. Insights into the reach to grasp movement. Amsterdam, The Netherlands: Elsevier Science B.V.; 1994. p. 215–37.
Flowers K. Lack of prediction in the motor behaviour of Parkinsonism. Brain. 1978;101:35–52.
Stern Y, Mayeux R, Rosen J, Ilson J. Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement. J Neurol Neurosurg Psychiatry. 1983;46:145–51.
Ansuini C, Giosa L, Turella L, Altoe G, Castiello U. An object for an action, the same object for other actions: effects on hand shaping. Exp Brain Res. 2008;185:111–9.
Castiello U, Bennett K, Bonfiglioli C, Lim S, Peppard RF. The reach-to-grasp movement in Parkinson’s disease: response to a simultaneous perturbation of object position and object size. Exp Brain Res. 1999;125:453–62.
Rand MK, Lemay M, Squire LM, Shimansky YP, Stelmach GE. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson’s disease. Exp Brain Res. 2010;201:509–25.
Lukos J, Ansuini C, Santello M. Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. J Neurosci. 2007;27:3894–903.
Lukos JR, Ansuini C, Santello M. Anticipatory control of grasping: independence of sensorimotor memories for kinematics and kinetics. J Neurosci. 2008;28:12765–74.
Lukos JR, Lee D, Poizner H, Santello M. Anticipatory modulation of digit placement for grasp control is affected by Parkinson’s disease. PLoS One. 2010;5:e9184.
Ingvarsson PE, Gordon AM, Forssberg H. Coordination of manipulative forces in Parkinson’s disease. Exp Neurol. 1997;145:489–501.
Fellows SJ, Noth J, Schwarz M. Precision grip and Parkinson’s disease. Brain. 1998;121(Pt 9):1771–84.
Nowak DA, Hermsdorfer J. Coordination of grip and load forces during vertical point-to-point movements with a grasped object in Parkinson’s disease. Behav Neurosci. 2002;116:837–50.
Muratori LM, McIsaac TL, Gordon AM, Santello M. Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson’s disease. Exp Brain Res. 2008;185:41–52.
Santello M, Muratori L, Gordon AM. Control of multidigit grasping in Parkinson’s disease: effect of object property predictability. Exp Neurol. 2004;187:517–28.
Gordon AM, Ingvarsson PE, Forssberg H. Anticipatory control of manipulative forces in Parkinson’s disease. Exp Neurol. 1997;145:477–88.
Nowak DA, Hermsdorfer J. Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res. 2006;173:650–60.
Nowak DA, Tisch S, Hariz M, Limousin P, Topka H, Rothwell JC. Sensory timing cues improve akinesia of grasping movements in Parkinson’s disease: a comparison to the effects of subthalamic nucleus stimulation. Mov Disord. 2006;21:166–72.
Wenzelburger R, Zhang BR, Pohle S, Klebe S, Lorenz D, Herzog J, Wilms H, Deuschl G, Krack P. Force overflow and levodopa-induced dyskinesias in Parkinson’s disease. Brain. 2002;125:871–9.
Johansson RS. Somatosensory signals and sensorimotor transformations in reactive control. In: Franzen O et al., editors. Somesthesis and the neurobiology of the somatosensory cortex. Switzerland: Birkhäuser Verlag Basel; 1996. p. 271–82.
Westling G, Johansson RS. Factors influencing the force control during precision grip. Exp Brain Res. 1984;53:277–84.
Rearick MP, Stelmach GE, Leis B, Santello M. Coordination and control of forces during multifingered grasping in Parkinson’s disease. Exp Neurol. 2002;177:428–42.
Boecker H, Lee A, Muhlau M, Ceballos-Baumann A, Ritzl A, Spilker ME, Marquart C, Hermsdorfer J. Force level independent representations of predictive grip force-load force coupling: a PET activation study. Neuroimage. 2005;25:243–52.
Pope P, Wing AM, Praamstra P, Miall RC. Force related activations in rhythmic sequence production. Neuroimage. 2005;27:909–18.
Vaillancourt DE, Mayka MA, Thulborn KR, Corcos DM. Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage. 2004;23:175–86.
Prodoehl J, Yu H, Wasson P, Corcos DM, Vaillancourt DE. Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. J Neurophysiol. 2008;99:3042–51.
Ehrsson HH, Fagergren A, Johansson RS, Forssberg H. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol. 2003;90:2978–86.
Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ. Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain. 1997;120(Pt 6):963–76.
Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain. 2000;123(Pt 2):394–403.
Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124:558–70.
Escola L, Michelet T, Douillard G, Guehl D, Bioulac B, Burbaud P. Disruption of the proprioceptive mapping in the medial wall of parkinsonian monkeys. Ann Neurol. 2002;52:581–7.
Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain. 2002;125:276–89.
Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI—cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126:451–61.
Turner RS, Grafton ST, McIntosh AR, DeLong MR, Hoffman JM. The functional anatomy of parkinsonian bradykinesia. Neuroimage. 2003;19:163–79.
Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 1992;32:151–61.
Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain. 1995;118(Pt 4):913–33.
Grafton ST. Contributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol. 2004;14:715–9.
Catalan MJ, Ishii K, Honda M, Samii A, Hallett M. A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain. 1999;122(Pt 3):483–95.
Glickstein M, Stein J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991;14:480–2.
Pessiglione M, Guehl D, Rolland AS, Francois C, Hirsch EC, Feger J, Tremblay L. Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci. 2005;25:1523–31.
Raz A, Frechter-Mazar V, Feingold A, Abeles M, Vaadia E, Bergman H. Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys. J Neurosci. 2001;21:RC128.
Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci. 2000;20:8559–71.
Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 2002;25:525–31.
Gatev P, Darbin O, Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord. 2006;21:1566–77.
Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H. Spike synchronization in the cortex/basal-ganglia networks of parkinsonian primates reflects global dynamics of the local field potentials. J Neurosci. 2004;24:6003–10.
Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 1998;21:32–8.
Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol. 2001;11:689–95.
Soikkeli R, Partanen J, Soininen H, Paakkonen A, Riekkinen Sr P. Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1991;79:159–65.
Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30:357–64.
Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced Parkinsonism. Brain Res. 1991;547:142–51.
Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. J Neurophysiol. 1994;72:507–20.
Nini A, Feingold A, Slovin H, Bergman H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. J Neurophysiol. 1995;74:1800–5.
Hutchison WD, Lozano AM, Tasker RR, Lang AE, Dostrovsky JO. Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res. 1997;113:557–63.
Merello M, Balej J, Delfino M, Cammarota A, Betti O, Leiguarda R. Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease. Mov Disord. 1999;14:45–9.
Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci. 2000;20:7766–75.
Swann N, Poizner H, Houser M, Gould S, Greenhouse I, Caj W, Strunk J, George J, Aron A. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J Neurosci. 2011;31:5721–9.
Brown P, Eusebio A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord. 2008;23:12–20. quiz 158.
Flink TA, Stelmach GE. Prehension characteristics in Parkinson’s disease patients. In: Nowak DA, Hermsdorfer J, editors. Sensorimotor control of grasping. Cambridge: Cambridge University Press; 2009. p. 311–25.
Klockgether T, Dichgans J. Visual control of arm movement in Parkinson’s disease. Mov Disord. 1994;9:48–56.
Deuschl G, Fogel W, Hahne M, Kupsch A, Muller D, Oechsner M, Sommer U, Ulm G, Vogt T, Volkmann J. Deep-brain stimulation for Parkinson’s disease. J Neurol. 2002;249 Suppl 3:III/36–9.
Deuschl G, Wenzelburger R, Kopper F, Volkmann J. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: a therapy approaching evidence-based standards. J Neurol. 2003;250 Suppl 1:I43–6.
Ashkan K, Wallace B, Bell BA, Benabid AL. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 1993–2003: where are we 10 years on? Br J Neurosurg. 2004;18:19–34.
Volkmann J. Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol. 2004;21:6–17.
Pahwa R, Lyons KE, Wilkinson SB, Simpson Jr RK, Ondo WG, Tarsy D, Norregaard T, Hubble JP, Smith DA, Hauser RA, Jankovic J. Long-term evaluation of deep brain stimulation of the thalamus. J Neurosurg. 2006;104:506–12.
Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.
Boucai L, Cerquetti D, Merello M. Functional surgery for Parkinson’s disease treatment: a structured analysis of a decade of published literature. Br J Neurosurg. 2004;18:213–22.
Schettino LF, Van Erp E, Hening W, Lessig S, Song D, Barba D, Poizner H. Deep brain stimulation of the subthalamic nucleus facilitates coordination of hand preshaping in Parkinson’s disease. Int J Neurosci. 2009;119:1905–24.
Wenzelburger R, Zhang BR, Poepping M, Schrader B, Muller D, Kopper F, Fietzek U, Mehdorn HM, Deuschl G, Krack P. Dyskinesias and grip control in Parkinson’s disease are normalized by chronic stimulation of the subthalamic nucleus. Ann Neurol. 2002;52:240–3.
Nowak DA, Topka H, Tisch S, Hariz M, Limousin P, Rothwell JC. The beneficial effects of subthalamic nucleus stimulation on manipulative finger force control in Parkinson’s disease. Exp Neurol. 2005;193:427–36.
Fellows SJ, Kronenburger M, Allert N, Coenen VA, Fromm C, Noth J, Weiss PH. The effect of subthalamic nucleus deep brain stimulation on precision grip abnormalities in Parkinson’s disease. Parkinsonism Relat Disord. 2006;12:149–54.
Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93.
Fregni F, Simon DK, Wu A, Pascual-Leone A. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry. 2005;76:1614–23.
Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M. Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord. 2006;21:325–31.
Gruner U, Eggers C, Ameli M, Sarfeld AS, Fink GR, Nowak DA. 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J Neural Transm. 2010;117:207–16.
Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117(Pt 4):847–58.
Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–403.
Duvoisin RD. Parkinson’s disease, a guide for patient and family. New York: Raven; 1984.
Duvoisin RC, Sage JI. The spectrum of Parkinson’s disease. In: Chokroverty S, editor. Movement disorders. Yorba Linda, CA: PMA; 1990. p. 159–77.
Sage JI, Mark MH, editors. Practical neurology of the elderly, vol. 2. New York: Marcel Dekker; 1996.
Sage JI. Fluctuations of nonmotor symptoms. In: Factor SA, Weiner WJ, editors. Parkinson’s disease: diagnosis and clinical management. New York: Demos Medical Publishing; 2002. p. 455–63.
Fahn S, Elton RL, Members of the UPDRS Development Committee. Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M, editors. Recent developments in Parkinson’s disease, vol. II. Florham Park, NJ: Macmillan Healthcare Information; 1987. p. 153–63. 293–304.
Sage JI. Pain in Parkinson’s disease. In: Reich SG, editor. Current treatment options in neurology, vol. 6. Philadelphia, PA. Current Science, Inc; 2004. p. 191–200.
McHale DM, Sage JI, Sonsalla PK, Vitagliano D. Complex dystonia of Parkinson’s disease; clinical features and relation to plasma levodopa profile. Clin Neuropharmacol. 1990;13:164–70.
Hillen ME, Sage JI. Nonmotor fluctuations in patients with Parkinson’s disease. Neurology. 1996;47:1180–3.
Sage JI, Kortis HI, Sommer W. Evidence for the role of spinal cord systems in Parkinson’s disease associated pain. Clin Neuropharmacol. 1990;13:171–4.
Sage JI, Mark MH. Basic mechanisms of motor fluctuations. Neurology. 1994;44 Suppl 6:S10–4.
Sage JI, Mark MH, McHale DM, Sonsalla PK, Vitagliano D. Benefits of monitoring plasma levodopa in Parkinson’s disease patients with drug-induced chorea. Ann Neurol. 1991;29:623–8.
Walters A, McHale D, Sage J, Hening W, Bergen M. A blinded study of the suppressibility of involuntary movements in Huntington’s chorea, tardive dyskinesia and L-DOPA induced chorea. Clin Neuropharmacol. 1990;13:236–40.
Hammon PS, Makeig S, Poizner H, Todorov E, de Sa V. Extracting trajectories and target endpoints from human EEG during a reaching task. IEEE Signal Process. 2008;25:69–77.
Brandeis D, Michel CM, Koenig T, Gianotti LRR. Integration of electrical neuroimaging with other functional imaging methods. In: Michel CM et al., editors. Electrical neuroimaging. Cambridge: Cambridge University Press; 2009. p. 215–32.
Mulert C, Lemieux L, editors. EEG–fMRI: physiological basis, technique, and applications. Berlin: Springer; 2010.
Ullsperger M, Debener S, editors. Simultaneous EEG and fMRI: recording, analysis, and application. New York: Oxford University Press; 2010.
Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol. 2006;197:244–51.
Acknowledgments
Supported in part by NIH grant #2 R01 NS036449 (HP).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Lukos, J.R., Poizner, H., Sage, J.I. (2014). Hand Function in Parkinson’s Disease. In: Duruöz, M. (eds) Hand Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9449-2_10
Download citation
DOI: https://doi.org/10.1007/978-1-4614-9449-2_10
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-9448-5
Online ISBN: 978-1-4614-9449-2
eBook Packages: MedicineMedicine (R0)