Skip to main content

Mimicking Biomineral Systems: What have we Achieved and Where do we go from Here?

  • Chapter
  • First Online:
Bio-Inspired Nanotechnology

Abstract

Biomimetic synthesis of inorganic crystals and composites has evolved dramatically since its inception. Advances in our understanding of matrix organization, templated nucleation, pathways of mineral formation via disordered precursor phases, mesocrystal formation, and the control of crystal shape have been paralleled by synthetic approaches to exploiting these discoveries. Resolution of current controversies concerning the early stages of nucleation and the mechanisms underlying both particle mediated crystal growth and matrix-directed nucleation will set the stage for further advances in the technology of biomimetic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Nat Acad of Sci USA 82:4110–4114

    Article  Google Scholar 

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987

    Article  Google Scholar 

  • Albeck S, Weiner S, Addadi L (1996) Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chem Eur J 2:278–284

    Article  Google Scholar 

  • Aizenberg J, Black AJ, Whitesides GM (1999) Control of crystal nucleation by patterned self-assembled monolayers. Nature 398:495–498

    Article  Google Scholar 

  • Aizenberg J, Muller DA, Grazul JL, Hamann DR (2003) Direct fabrication of large micropatterned single crystals. Science 299:1205–1208

    Article  Google Scholar 

  • Banfield JF, Welch SA, Zhang HZ, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  Google Scholar 

  • Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc Royal Soc London B: Biol Sci 264:461–465

    Article  Google Scholar 

  • Berman A, Addadi L, Weiner S (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals—a study of intracrystalline proteins. Nature 331:546–548

    Article  Google Scholar 

  • Berman A, Ahn DJ, Lio A, Salmeron M, Reichert A, Charych D (1995) Total alignment of calcite at acidic polydiacetylene films: cooperativity at the organic-inorganic interface. Science 269:515–518

    Article  Google Scholar 

  • Chen C-L, Qi J, Zuckermann RN, DeYoreo JJ (2011) Engineered biomimetic polymers as tunable agents for controlling CaCO3 mineralization. J Am Chem Soc Commun 133:5214–5217

    Article  Google Scholar 

  • Chung S, Shin SH, Bertozzi CR, De Yoreo JJ (2010) Self-catalyzed growth of S layers via an amorphous to-crystalline transition limited by folding kinetics. Proc Natl Acad Sci USA 107:16536–16541

    Article  Google Scholar 

  • Chung W-J, Oh J-W, Kwak K et al (2011a) Biomimetic self-templating supramolecular structures. Nature 478:364–368

    Article  Google Scholar 

  • Chung W-J, Kwon K-Y, Song J, Lee SW (2011b) Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27:7620–7628

    Article  Google Scholar 

  • Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365

    Article  Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, Chichester

    Book  Google Scholar 

  • De Yoreo JJ, Vekilov P (2003) Principles of crystal nucleation and growth. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization reviews in mineralogy and geochemistry, vol 54. Mineralogical Society of America, Washington, pp 57–93

    Google Scholar 

  • De Yoreo JJ, Dove PM (2004) Shaping crystals with biomolecules. Science 306:1301–1302

    Article  Google Scholar 

  • De Yoreo JJ, Wierzbicki A, Dove PM (2007) New insights into mechanisms of biomolecular control on growth of inorganic crystals. CrysEngComm 9:1144–1152

    Article  Google Scholar 

  • De Yoreo JJ, Chung S, Friddle RW (2013) In situ AFM as a tool for investigating interactions and assembly dynamics in biomolecular and biomineral systems. Adv Func Mat 23:2525–2538

    Article  Google Scholar 

  • Fletcher JM, Harniman RL, Frederick RH et al (2013) Self-assembling cages from coiled-coil peptide modules. Science 340:595–599

    Article  Google Scholar 

  • Freeman CL, Hu Q, Nielsen MH, Tao J, De Yoreo JJ, Harding JH (2013) Surface selectivity of calcite on self-assembled monolayers. J Phys Chem C 117:5154–5163

    Article  Google Scholar 

  • Gebauer D, Volkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822

    Article  Google Scholar 

  • Gebauer D, Colfen H (2011) Prenucleation clusters and non-classical nucleation. Nanotoday 6:564–584

    Article  Google Scholar 

  • Giuffre AJ, Hamm LM, Han N, De Yoreo JJ, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci USA 110:9261–9266

    Article  Google Scholar 

  • Gong YUT, Killian CE, Olson IC et al (2012) Phase transitions in biogenic amorphous calcium carbonate. Proc Natl Acad Sci USA 109:6088–6093

    Article  Google Scholar 

  • Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210:719–734

    Article  Google Scholar 

  • Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551–4627

    Article  Google Scholar 

  • Habraken WJEM et al (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507

    Article  Google Scholar 

  • Hamm LM, Giuffre AJ, Han N, De Yoreo JJ, Dove PM (2013) Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. (Submitted)

    Google Scholar 

  • HanY J, and Aizenberg J (2003) Face-selective nucleation of calcite on self-assembled monolayers of alkanethiols: effect of the parity of the alkyl chain. Angew Chem Int Ed 42:3668–3670

    Article  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  Google Scholar 

  • Hu Q, Nielsen MH, Freeman CL, Hamm LM et al (2012) The thermodynamics of calcite nucleation: classical vs. non-classical pathways. Faraday Disc 159:509–523

    Article  Google Scholar 

  • Kim Y-Y, Ganesan K, Yang P et al (2011) An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat Mater 10:890–896

    Article  Google Scholar 

  • Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202

    Article  Google Scholar 

  • Lee S-W, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Article  Google Scholar 

  • Li H, Xin HL, Muller DA, Estroff LA (2009) Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326:1244–1247

    Article  Google Scholar 

  • Li D, Nielsen MH, Lee JRI, Frandsen C, Banfield JF, De Yoreo JJ (2012) Direction-specific interactions control crystal growth by oriented attachment. Science 336:1014–1018

    Article  Google Scholar 

  • Li D, Soberanis F, Fu J, Hou W, Wu J, Kisailus D (2013) Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment. Cryst Growth Des 13:422–428

    Article  Google Scholar 

  • Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc Nat Acad Sci USA 105:12748–12753

    Article  Google Scholar 

  • Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124

    Article  Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505

    Article  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford 198 pp

    Google Scholar 

  • Mao C et al (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217

    Article  Google Scholar 

  • Nam K-T, Shelby SA, Choi PH et al (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9:454–460

    Article  Google Scholar 

  • Navrotsky A (2004) Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc Nat Acad Sci USA 101:12096–12101

    Article  Google Scholar 

  • Nudelman F, Pieterse K, George A et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  Google Scholar 

  • Olszta MJ, Cheng X, Jee SS et al (2007) Bone structure and formation: a new perspective. Mat Sci Eng R 58:77–116

    Article  Google Scholar 

  • Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971

    Article  Google Scholar 

  • Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164

    Article  Google Scholar 

  • Pouget EM, Bomans PHH, Goos JACM, Frederik PM, De With G, Sommerdijk NAJM (2009) The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM. Science 323:1455–1458

    Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Science 440:297–302

    Google Scholar 

  • Shin SH, Chung S, Sanii B, Comolli LR, Bertozzi CR, De Yoreo JJ (2012) Direct observation of kinetic traps associated with structural transformations leading to multiple pathways of S-layer assembly. Proc Nat Acad Sci U S A 109:12968–12973

    Article  Google Scholar 

  • Schrier SB, Sayeg MK, Gray JJ (2011) Prediction of calcite morphology from computational and experimental studies of mutations of a de novo-designed peptide. Langmuir 27:11520–11527

    Article  Google Scholar 

  • Stephanopoulos N, Liu M, Tong GJ et al (2010) Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami nanoletters 10:2714–2720

    Google Scholar 

  • Tao J, Zhou D, Zhang Z, Xu X, Tang R (2009) Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc Nat Acad Sci 106:22096–22101

    Article  Google Scholar 

  • Wallace AF, Hedges LO, Fernandez-Martinez A et al (2013) Liquid-liquid separation explains “non-classical” behavior during CaCO3 crystallization. Science 341:885–889

    Article  Google Scholar 

  • Weiner S, Hood L (1975) Soluble proteins of the organic matrix of mollusk shell: a potential template for shell formation. Science 190:987–989

    Article  Google Scholar 

  • Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255

    Article  Google Scholar 

  • Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668

    Article  Google Scholar 

  • Zhang J, Huang F, Lin Z (2010) Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2:18–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. De Yoreo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Yoreo, J.J. (2014). Mimicking Biomineral Systems: What have we Achieved and Where do we go from Here?. In: Knecht, M., Walsh, T. (eds) Bio-Inspired Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9446-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9446-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9445-4

  • Online ISBN: 978-1-4614-9446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics