Doty RL (1995) Introduction and historical perspective. Marcel Dekker, New York, NY, pp 1–32
Google Scholar
Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey WH, Craft S (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis 13:323–331
CAS
PubMed Central
PubMed
Google Scholar
Pirard C, Loumaye E (2005) GnRH agonist as novel luteal support: results of a randomized, parallel group, feasibility study using intranasal administration of buserelin. Hum Reprod 20:1798–1804
CAS
CrossRef
PubMed
Google Scholar
Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516
CAS
CrossRef
PubMed
Google Scholar
Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH, Toth C (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131:3311–3334
CrossRef
PubMed
Google Scholar
Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH (2008) Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience 152:785–797
CAS
CrossRef
PubMed
Google Scholar
Matsuoka Y, Gray AJ, Hirata-Fukae C, Minami SS, Waterhouse EG, Mattson MP, LaFerla FM, Gozes I, Aisen PS (2007) Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. J Mol Neurosci 31:165–170
CAS
PubMed
Google Scholar
Baker H (1995) Transport phenomena within the olfactory system. Marcel Dekker, New York, NY, pp 173–190
Google Scholar
Mathison S, Nagilla R, Kompella UB (1998) Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target 5:415–441
CAS
CrossRef
PubMed
Google Scholar
Kubek MJ, Ringel I, Domb AJ (2001) Issues related to intranasal delivery of neuropeptides to temporal lobe targets. Springer, New York, NY, pp 323–350
Google Scholar
Lockman PR, Mumper RJ, Khan MA, Allen DD (2002) Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev Ind Pharm 28:1–13
CAS
CrossRef
PubMed
Google Scholar
Gozes I, Brenneman DE, Geppetti P, Kastin AJ, Mains RE, Moody TW, Seroogy K, Spier AD, Zimmermann M (2001) Neuropeptides: brain messengers of many faces. Trends Neurosci 24:687–690
CAS
CrossRef
PubMed
Google Scholar
Illum L (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56:3–17
CAS
CrossRef
PubMed
Google Scholar
Agarwal V, Mishra B (1999) Recent trends in drug delivery systems: intranasal drug delivery. Indian J Exp Biol 37:6–16
CAS
PubMed
Google Scholar
Egleton RD, Davis TP (2005) Development of neuropeptide drugs that cross the blood–brain barrier. NeuroRx 2:44–53
PubMed Central
CrossRef
PubMed
Google Scholar
Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379:146–157
CAS
CrossRef
PubMed
Google Scholar
Mygind N, Anggard A (1984) Anatomy and physiology of the nose-pathophysiologic alterations in allergic rhinitis. Clin Rev Allergy 2:173–188
CAS
PubMed
Google Scholar
Chien YW, Chang S (1987) Intranasal drug delivery for systemic medication. Crit Rev Ther Drug Carrier Syst 4:67–194
CAS
PubMed
Google Scholar
Khanvilker K, Donovan MD, Flanagan DR (2001) Drug transfer through mucus. Adv Drug Deliv Rev 28:173–193
CrossRef
Google Scholar
Wermeling DP, Miller JL, Rudy AC (2004) Systematic intranasal drug delivery: concept and applications. Drug Deliv Technol 2:22–30
Google Scholar
Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676
CAS
CrossRef
PubMed
Google Scholar
Lewis J, Dahl AR (1995) Olfactory mucosa: composition, enzymatic localization, and metabolism. Marcel Dekker, New York, NY, pp 33–52
Google Scholar
Morrison EE, Moran DT (1995) Anatomy and ultrastructure of the human olfactory neuroepithelium. Marcel Dekker, New York, NY, pp 75–101
Google Scholar
Kratskin IL (1995) Functional anatomy, central connections, and neurochemistry of the mammalian olfactory bulb. Marcel Dekker, New York, NY, pp 103–126
Google Scholar
Barnea G, O’Donnell S, Mancia F, Sun X, Nemes A, Mendelsohn M, Axel R (2004) Odorant receptors on axon termini in the brain. Science 304:1468
CAS
CrossRef
PubMed
Google Scholar
Watelet J-B, Katotomichelakis M, Eloy P, Danielidis V (2009) The physiological basics of the olfactory neuro-epithelium. B-ENT 5:11–19
PubMed
Google Scholar
Thorne RG, Emory CR, Ala TA, Frey WH (1995) Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 692:278–282
CAS
CrossRef
PubMed
Google Scholar
Ochs S, Brimijoin WS (1993) Axonal transport, 3rd edn. WB Saunders, Philadelphia, PA, pp 331–360
Google Scholar
Shipley MT (1985) Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull 15:129–142
CAS
CrossRef
PubMed
Google Scholar
Heuer H, Schafer MKH, Bauer K (1998) The thyrotropin-releasing hormone-degrading ectoenzyme: the third element of the thyrotropin-releasing hormone-signaling system. Thyroid 8:915–920
CAS
CrossRef
PubMed
Google Scholar
Griffiths EC, Kelly JA, Ashcroft A, Ward DJ, Robson B (1989) Part V. TRH metabolism. Comparative metabolism and conformation of TRH and its analogues. Ann NY Acad Sci 553:217–231
CAS
CrossRef
PubMed
Google Scholar
Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33
CAS
CrossRef
PubMed
Google Scholar
Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11:1–18
CAS
CrossRef
PubMed
Google Scholar
Kubek MJ, Domb AJ, Veronesi MC (2009) Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 6:359–371
CAS
CrossRef
PubMed
Google Scholar
Kanayama Y, Enomoto S, Irie T, Amano R (2005) Axonal transport of rubidium and thallium in the olfactory nerve of mice. Nucl Med Biol 32:505–512
CAS
CrossRef
PubMed
Google Scholar
Wermeling DP (2009) Intranasal delivery of antiepileptic medications for treatment of seizures. Neurotherapeutics 6:352–358
CAS
CrossRef
PubMed
Google Scholar
Sarkar MA (1992) Drug metabolism in the nasal mucosa. Pharm Res 9:1–9
CAS
CrossRef
PubMed
Google Scholar
Tsuji A (2005) Small molecular drug transfer across the blood–brain barrier via carrier-mediated transport systems. NeuroRx 2:54–62
PubMed Central
CrossRef
PubMed
Google Scholar
Pardridge WM (2005) The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14
PubMed Central
CrossRef
PubMed
Google Scholar
Cross R, Scholey J (1999) Kinesin: the tail unfolds [news; comment]. Nat Cell Biol 1:E119–E121
CAS
CrossRef
PubMed
Google Scholar
Cross DJ, Minoshima S, Anzai Y, Flexman JA, Keogh BP, Kim Y, Maravilla KR (2004) Statistical mapping of functional olfactory connections of the rat brain in vivo. Neuroimage 23:1326–1335
CrossRef
PubMed
Google Scholar
Takeda A, Kodama Y, Ishiwatari S, Okada S (1998) Manganese transport in the neural circuit of rat CNS. Brain Res Bull 45:149–152
CAS
CrossRef
PubMed
Google Scholar
O’Cuinn G, O’Connor B, Elmore M (1990) Degradation of thyrotropin-releasing hormone and luteinising hormone-releasing hormone by enzymes of brain tissue. J Neurochem 54:1–13
CrossRef
PubMed
Google Scholar
Kristensson K, Olsson Y (1971) Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol 19:145–154
CAS
CrossRef
PubMed
Google Scholar
Marangell LB, George MS, Callahan AM, Ketter TA, Pazzaglia PJ, L’Herrou TA, Leverich GS, Post RM (1997) Effects of intrathecal thyrotropin-releasing hormone (protirelin) in refractory depressed patients. Arch Gen Psychiatry 54:214–222
CAS
CrossRef
PubMed
Google Scholar
Callahan AM, Frye MA, Marangell LB, George MS, Ketter TA, L’Herrou T, Post RM (1997) Comparative antidepressant effects of intravenous and intrathecal thyrotropin-releasing hormone: confounding effects of tolerance and implications for therapeutics. Biol Psychiatry 41:264–272
CAS
CrossRef
PubMed
Google Scholar
Szuba MP, Amsterdam JD, Fernando AT III, Gary KA, Whybrow PC, Winokur A (2005) Rapid antidepressant response after nocturnal TRH administration in patients with bipolar type I and bipolar type II major depression. J Clin Psychopharmacol 25:325–330
CAS
CrossRef
PubMed
Google Scholar
Nillni EA, Sevarino KA (1999) The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocr Rev 20:599–648
CAS
PubMed
Google Scholar
Gary KA, Sevarino KA, Yarbrough GG, Prange AJ Jr, Winokur A (2003) The thyrotropin-releasing hormone (TRH) hypothesis of homeostatic regulation: implications for TRH-based therapeutics. J Pharmacol Exp Ther 305:410–416
CAS
CrossRef
PubMed
Google Scholar
Machado-Vieira R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate CA Jr (2008) Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depressive disorder. J Clin Psychiatry 69:946–958
PubMed Central
CrossRef
PubMed
Google Scholar
Kubek MJ, Garg BP (2002) Thyrotropin-releasing hormone (TRH) in the treatment of intractable epilepsy. Pediatr Neurol 26:9–17
CrossRef
PubMed
Google Scholar
Kubek MJ, Liang D, Byrd KE, Domb AJ (1998) Prolonged seizure suppression by a single implantable polymeric-TRH microdisk preparation. Brain Res 809:189–197
CAS
CrossRef
PubMed
Google Scholar
Veronesi MC, Kubek DJ, Kubek MJ (2007) Intranasal delivery of a thyrotropin-releasing hormone analog attenuates seizures in the amygdala-kindled rat. Epilepsia 48:2280–2286
CAS
PubMed
Google Scholar
Veronesi MC, Aldouby Y, Domb AJ, Kubek MJ (2009) Thyrotropin-releasing hormone d, l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res 1303:151–160
CAS
CrossRef
PubMed
Google Scholar
Xu P, Gullotti E, Tong L, Highley CB, Errabelli DR, Hasan T, Cheng JX, Kohane DS, Yeo Y (2009) Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm 6:190–201
CAS
PubMed Central
CrossRef
PubMed
Google Scholar
Kubek MJ, Hill TG (1987) Methods of Thyrotropin-releasing hormone measurement. In: Hingtgen JN, Hellhammer DH, Huppmann G (eds) Advanced Methods In Psychology. CJ Hogrefe, Inc. Toronto, pp 261–279
Google Scholar
Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey WH II (1998) Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimer’s Dis 1:35–45
CAS
Google Scholar
Kubek MJ, Yard M, Lahiri DK, Domb AJ (2007) Characterization of novel intranasal sustained-release nanoparticles for delivery of neuropeptides to the brain. American Scientific Publishers, New York, NY, pp 73–84
Google Scholar