Skip to main content

Treatment of Brain Tumors

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Malignant brain tumors are typically characterized by high rates of invasiveness and resistance to many forms of treatment. The main treatment modalities for malignant brain tumors consist of maximum safe surgical resection, chemotherapy, radiosurgery, or combination of these. Locally delivered chemotherapy is particularly suitable for brain tumor therapy following surgical resection since it bypasses the blood–brain barrier, maintains a higher stable drug concentration for longer periods of time, and has a more extensive distribution in the peritumoral areas than systemically administered chemotherapy with subsequent tumoricidal effects. The development of Gliadel, a BCNU-loaded polymer, approved in 1996 and successfully evaluated in clinical trials, has opened the door for a new arsenal of drugs for treatment of malignant primary brain tumors. New chemotherapeutic agents such as platinum-derived drugs, antiangiogenic compounds, and immunomodulatory molecules, among others, have undergone successful preclinical testing and await further clinical evaluation. A new generation of drug delivery microchips, gene-targeted drugs, and nanocarriers will enable simultaneous treatment with multiple agents based on the histological phenotype and genotype profile, which should result in highly individualized and more effective treatments for patients with this devastating disease.

Keywords

  • Malignant Glioma
  • Malignant Brain Tumor
  • PLGA Microsphere
  • Sebacic Acid
  • Recurrent Glioma

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_7
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 7.1

References

  1. Hulleman E, Helin K (2005) Molecular mechanisms in gliomagenesis. Adv Cancer Res 94:1–27

    CAS  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068, Epub 2008 Sep 4

    Google Scholar 

  3. Gaspar LE, Fisher BJ, Macdonald DR, LeBer DV, Halperin EC, Schold SC Jr, Cairncross JG (1992) Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys 24:55–57

    CAS  PubMed  Google Scholar 

  4. Palanichamy K, Erkkinen M, Chakravarti A (2006) Predictive and prognostic markers in human glioblastomas. Curr Treat Options Oncol 7:490–504

    PubMed  Google Scholar 

  5. Kornblith PL, Walker M (1988) Chemotherapy for malignant gliomas. J Neurosurg 68:1–17

    CAS  PubMed  Google Scholar 

  6. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4:278–299

    PubMed Central  PubMed  Google Scholar 

  7. Stupp HME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    CAS  PubMed  Google Scholar 

  8. McGirt MJ, Than KD, Weingart JD, Chaichana KL, Attenello FJ, Olivin A, Laterra J, Kleinberg LR, Grossman SA, Brem H et al (2009) Gliadel (BCNU) wafers plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J Neurosurg 110:583–588

    CAS  PubMed  Google Scholar 

  9. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    CAS  PubMed  Google Scholar 

  10. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–766

    PubMed  Google Scholar 

  11. Sanai N, Polley M, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    PubMed  Google Scholar 

  12. Schneider JP, Trantakis C, Rubach M, Schulz T, Dietrich J, Winkler D, Renner C, Schober R, Geiger K, Brosteanu O et al (2005) Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme—a quantitative radiological analysis. Neuroradiology 47(7):489–500. doi:10.1007/s00234-005-1397-1

    PubMed  Google Scholar 

  13. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    CAS  PubMed  Google Scholar 

  14. Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24:1273–1280

    CAS  PubMed  Google Scholar 

  15. Newton HB, Junck L, Bromberg J et al (1990) Procarbazine chemotherapy in the treatment of recurrent malignant astrocytomas after radiation and nitrosourea failure. Neurology 40:1743–1746

    CAS  PubMed  Google Scholar 

  16. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  17. Pegg AE (1990) Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 50:6119–6129

    CAS  PubMed  Google Scholar 

  18. Weller M, Stupp R, Reifenberger G et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51

    CAS  PubMed  Google Scholar 

  19. Hansen RJ, Nagasubramanian R, Delaney SM, Samson LD, Dolan ME (2007) Role of O6-methylguanine-DNA methyltransferase in protecting from alkylating agent-induced toxicity and mutations in mice. Carcinogenesis 28:1111–1116

    CAS  PubMed  Google Scholar 

  20. Hau P, Koch D, Hundsberger T et al (2007) Safety and feasibility of long-term temozolomide treatment in patients with high-grade glioma. Neurology 68:688–690

    CAS  PubMed  Google Scholar 

  21. National Comprehensive Cancer Network. NCCN guidelines version 2.2011: central nervous system cancers. Available at: http://www.nccn.org. Accessed 16 Aug 2011

  22. Friedman HS, Prados MD, Wen PY et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740

    CAS  PubMed  Google Scholar 

  23. Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan in recurrent glioblastoma. J Clin Oncol 27:740–745

    CAS  PubMed  Google Scholar 

  24. FDA Briefing Document Oncology Drug Advisory Committee Meeting, March 31, 2009. http://www.fda.gov/ohrms/dockets/ac/09/briefing/2009-4427b1-01-FDA.pdf

  25. Guckenberger M, Mayer M, Buttmann M, Vince GH, Sweeney RA, Flentie M (2011) Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme. Strahlenther Onkol 187(9):548–554

    PubMed  Google Scholar 

  26. Cohen-Jonathan ME (2011) Optimization of the radiotherapy for the gliomas: hopes and research axis for the next future. Rev Neurol (Paris) 167(10):656–660

    Google Scholar 

  27. Guerin C, Laterra J, Hruban RH, Brem H, Drewes LR, Goldstein GW (1990) The glucose transporter and the blood–brain barrier of human brain tumors. Ann Neurol 28:758–765

    CAS  PubMed  Google Scholar 

  28. Lee J, Lund-Smith C, Borboa A, Gonzalez AM, Baird A, Eliceiri BP (2009) Glioma-induced remodeling of the neurovascular unit. Brain Res 1288:125–134, Epub 2009 Jul 9

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896, Review

    CAS  PubMed  Google Scholar 

  30. Goodman LS, Hardman JG, Limbird LE, Gilman AG (eds) (2001) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, NY. pp xxvii, 2148. [2141] fold leaf of plates

    Google Scholar 

  31. Hannigan E, Green S, Alberts DS, O’toole R, Surwit E (1993) Results of a southwest oncology group phase III trial of carboplatin plus cyclophosphamide versus cisplatin plus cyclophosphamide in advanced ovarian cancer. Oncology 50(Suppl 2):2–9

    PubMed  Google Scholar 

  32. Slichenmyer WJ, Rowinsky EK, Dohenower RC, Kaufmann SH (1993) The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst 85(4):271–291

    CAS  PubMed  Google Scholar 

  33. Abbott NJ, Romero IA (1996) Transporting therapeutics across the blood–brain barrier. Mol Med Today 2(3):106–113

    CAS  PubMed  Google Scholar 

  34. Grieg NH (1987) Optimizing drug delivery to brain tumors. Cancer Treat Rev 14(1):1–28

    Google Scholar 

  35. Rautioa J, Chikhale PJ (2004) Drug delivery systems for brain tumor therapy. Curr Pharm Des 10(12):1341–1353

    PubMed  Google Scholar 

  36. Kushara H, Sugiyama Y (2001) Efflux transport systems for drugs at the blood–brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov Today 6(3):150–156

    Google Scholar 

  37. McDannold N, Vykhodtseva N, Hynynen K (2008) Blood–brain barrier disruption induced by focused ultrasound and circulating performed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34(5):834–840

    PubMed Central  PubMed  Google Scholar 

  38. Auffinger B, Thaci B, Nigam P, Rincon E, Cheng Y, Lesniak MS (2012) New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med Rep 4:18, Epub 2012 Sep 5

    PubMed Central  PubMed  Google Scholar 

  39. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760, Epub 2006 Oct 18

    CAS  PubMed  Google Scholar 

  40. Biswas T, Okunieff P, Schell MC, Smudzin T, Pilcher WH, Bakos RS, Vates GE, Walter KA, Wensel A, Korones DN, Milano MT (2009) Stereotactic radiosurgery for glioblastoma: retrospective analysis. Radiat Oncol 4:11

    PubMed Central  PubMed  Google Scholar 

  41. Cuneo KC, Vredenburgh JJ, Sampson JH, Reardon DA, Desjardins A, Peters KB, Friedman HS, Willett CG, Kirkpatrick JP (2012) Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 82(5):2018–2024, Epub 2011 Apr 12

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Minniti G, Scaringi C, De Sanctis V, Lanzetta G, Falco T, Di Stefano D, Esposito V, Enrici RM (2013) Hypofractionated stereotactic radiotherapy and continuous low-dose temozolomide in patients with recurrent or progressive malignant gliomas. J Neurooncol 111(2):187–194

    CAS  PubMed  Google Scholar 

  43. Schwer AL, Damek DM, Kavanagh BD, Gaspar LE, Lillehei K, Stuhr K, Chen C (2008) A phase I dose-escalation study of fractionated stereotactic radiosurgery in combination with gefitinib in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 70(4):993–1001

    CAS  PubMed  Google Scholar 

  44. Welsh J, Sanan A, Gabavan AJ, Green SB, Lustig R, Burri S, Kwong E, Stea B (2007) GliaSite brachytherapy boost as part of initial treatment of glioblastoma multiforme: a retrospective multi-institutional pilot study. Int J Radiat Oncol Biol Phys 68(1):159–165

    PubMed  Google Scholar 

  45. Wernicke AG, Sherr DL, Schwartz TH, Pannullo SC, Stieg PE, Boockvar JA, Molterno JA, Invandize J, Trichter S, Sabbas AM, Parashar B, Nori D (2010) The role of dose escalation with intracavitary brachytherapy in the treatment of localized CNS malignancies: outcomes and toxicities of a prospective study. Brachytherapy 9(1):91–99

    PubMed  Google Scholar 

  46. Rogers LR, Rock JP, Sills AK, Vogelbaum MA, Suh JH, Ellis TL, Stieber VW, Asher AL, Fraser RW, Billingsley JS, Lewis P, Schellingerhout D, Shaw EG, Brain Metastasis Study Group (2006) Results of a phase II trial of the GliaSite radiation therapy system for the treatment of newly diagnosed, resected single brain metastases. J Neurosurg 105(3):375–384

    PubMed  Google Scholar 

  47. Adkison JB, Thomadsen B, Howard SP (2008) Systemic iodine 125 activity after GliaSite brachytherapy: safety considerations. Brachytherapy 7(1):43–46

    PubMed  Google Scholar 

  48. Hodozuka A, Hayashi Y, Annei R, Hiroshima S, Saito M, Orimoto R, Sato M, Tanaka T (2008) Intrathecal infusion of the antineoplastic agents for meningeal dissemination. Gan To Kagaku Ryoho 35(6):900–905

    PubMed  Google Scholar 

  49. Stukel JM, Caplan MR (2009) Targeted drug delivery for treatment and imaging of glioblastoma multiforme. Expert Opin Drug Deliv 6(7):705–718

    CAS  PubMed  Google Scholar 

  50. Debinski W, Tatter SB (2009) Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother 9(10):1519–1527

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Lopez KA, Tannenbaum AM, Assanah MC, Linskey K, Yun J, Kangarlu A, Gill OD, Canoll P, Bruce JN (2011) Convection-enhanced delivery of topotecan into a PDGF-driven model of glioblastoma prolongs survival and ablates both tumor-initiating cells and recruited glial progenitors. Cancer Res 71(11):3963–3971

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Dickinson PJ, Lecouteur RA, Higgins RB, Bringas JR, Roberts B, Larson RF, Yamashita Y, Krauze M, Noble CO, Drummond D, Kirpotin DB, Bankiewicz KS (2008) Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging. J Neurosurg 108:989–998

    CAS  PubMed  Google Scholar 

  53. Vogelbaum MA (2005) Convection enhanced delivery for the treatment of malignant gliomas: symposium review. J Neurooncol 73(1):57–69

    PubMed  Google Scholar 

  54. Kunwar S, Chang S, Westphal M, ZVogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M et al (2010) Phase III randomized trial of CED of Il13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 12(8):871–881

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gallia GL, Brem S, Brem H (2005) Local treatment of malignant brain tumors using implantable chemotherapeutic polymers. J Natl Compr Canc Netw 3:721–728

    PubMed  Google Scholar 

  56. Patel SJ, Shapira WR, Laske DW, Jensen RL, Asher AL, Wessels BW, Carpenter SP, Shan JS (2005) Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery 56(6):1243–1252

    PubMed  Google Scholar 

  57. Shapiro WR, Carpenter SP, Roberts K, Shan JS (2006) 1311-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma. Expert Opin Biol Ther 6(5):539–545

    CAS  PubMed  Google Scholar 

  58. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, Hadani M, Ram Z (2004) Convection enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 47(6):472–479

    Google Scholar 

  59. Van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles from tumour-targeted drug delivery. Expert Opin Drug Deliv 3(2):205–216

    PubMed  Google Scholar 

  60. Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    CAS  PubMed  Google Scholar 

  61. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345(8964):1008–1012

    CAS  PubMed  Google Scholar 

  62. Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, Unsgaard G, Kuurne T (1997) Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 41(1):44–48

    CAS  PubMed  Google Scholar 

  63. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J, Ram Z (2003) A phase III trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro oncol 5(2):79–877

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Smith SG, Galanis JC (1995) One-year results of the intrascleral glaucoma implant. J Cataract Refract Surg 21(4):453–456

    CAS  PubMed  Google Scholar 

  65. Yue IC, Poff J, Cortés ME, Sinisterra RD, Faris CB, Hildgen P, Langer R, Shastri VP (2004) A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials 25(17):3743–3750

    CAS  PubMed  Google Scholar 

  66. Friend DR (1990) Transdermal delivery of contraceptives. Crit Rev Ther Drug Carrier Syst 7(2):149–186

    CAS  PubMed  Google Scholar 

  67. Spitz A, Young JM, Larsen L, Mattia-Goldberg C, Donnelly J, Chwalisz K (2012) Efficacy and safety of leuprolide acetate 6-month depot for suppression of testosterone in patients with prostate cancer. Prostate Cancer Prostatic Dis 15(1):93–99. doi:10.1038/pcan.2011.50. Epub 2011 Oct 25

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Brady JM, Cutright DE, Miller RA, Barristone GC (1973) Reabsorption rate, route, route of elimination and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat. J Biomed Mater Res 7(2):155–156

    CAS  PubMed  Google Scholar 

  69. Frazza EJ, Schmitt EE (1971) A new absorbable suture. J Biomed Mater Res 5(2):43–58

    CAS  PubMed  Google Scholar 

  70. Spenlehauer G, Vert M, Benoit JP, Boddaert A (1989) In vitro and in vivo degradation of Poly (D, L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials 10(8):557–563

    CAS  PubMed  Google Scholar 

  71. Leong KW, Brott BC, Langer R (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J Biomed Mater Res 19(8):941–955

    CAS  PubMed  Google Scholar 

  72. Chasin M, Domb A, Rone E (1990) Polyanhydrides as drug delivery systems. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Macel Dekker, New York, NY, pp 43–70

    Google Scholar 

  73. Bindschadeler C, Leong K, Mathiowitz E, Langer R (1988) Polyanhydride microsphere formulation by solvent extraction. J Pharm Sci 77(8):696–698

    Google Scholar 

  74. Levy-Nissenbaum E, Khan W, Pawar RP, Tabakman R, Naftali E, Winkler I, Kaufman O, Klapper L, Domb AJ (2012) Pharmacokinetic and efficacy study of cisplatin and paclitaxel formulated in a new injectable poly(sebacic-co-ricinoleic acid) polymer. Eur J Pharm Biopharm 82(1):85–93. doi:10.1016/j.ejpb.2012.06.004, Epub 2012 Jun 23

    CAS  PubMed  Google Scholar 

  75. Leong KW, Kost J, Mathiowitz E, Langer R (1989) Polyanhydrides for controlled release of bioactive agents. Biomaterials 7(5):364–371

    Google Scholar 

  76. Brem H, Tamargo RJ, Olivi Pinn M, Weingart JD, Wharam M, Epstein JI (1994) Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J Neurosurg 80(2):283–290

    CAS  PubMed  Google Scholar 

  77. Green SB, Byar DP, Walker MD, Pistenmaa DA, Alexander E Jr, Batzdorf U, Brooks WH, Hunt WE, Mealey J Jr, Odom GL et al (1983) Comparisons of carmustine, procarbazine and, high-dose methylprednisolone as additions to surgery and radiotherapy for the treatment of malignant glioma. Cancer Treat Rep 67(2):121–132

    CAS  PubMed  Google Scholar 

  78. Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Mahaley MS Jr, Mealey J Jr et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303(23):1323–1329

    CAS  PubMed  Google Scholar 

  79. Grossman SA, Reinhard C, Colvin OM, Chasin M, Brundrett R, Tamargo RJ, Brem H (1992) The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 76(4):640–647

    CAS  PubMed  Google Scholar 

  80. Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, Colvin OM, Brem H, Saltzman WM (1998) Pharmacokinetics of interstitial delivery of carmustine 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 58(4):672–684

    CAS  PubMed  Google Scholar 

  81. Tamargo RJ, Myseros JS, Epstein JI, Yang MB, Chasin M, Brem H (1993) Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res 53(2):329–333

    CAS  PubMed  Google Scholar 

  82. Brem H, Mahaley MS Jr, Vick NA, Black KL, Schold SC Jr, Burger PC, Friedman AH, Ciric IS, Eller TW, Cozzens JW et al (1991) Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 74(3):441–446

    CAS  PubMed  Google Scholar 

  83. Brem H, Ewend MG, Piantadosi S, Greenhoot J, Burger PC, Sisti M (1995) The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neurooncol 26(2):111–123

    CAS  PubMed  Google Scholar 

  84. Sipos EP, Tyler B, Piantadosi S, Burger PC, Brem H (1997) Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 39(5):383–389

    CAS  PubMed  Google Scholar 

  85. Olivi A, Grossman SA, Tatter S, Barker F, Judy K, Olsen J, Bruce J, Hilt D, Fisher J, Piantadosi S (2003) New approaches to brain tumor therapy CNS consortium: dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: a new approaches to brain tumor therapy CNS consortium trial. J Clin Oncol 21(9):1845–1849

    CAS  PubMed  Google Scholar 

  86. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quiniones-Hinojosa A, Brem H (2008) Use of gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893

    PubMed  Google Scholar 

  87. Chaichana KL, Zaidi H, Pendelton C, McGrit MJ, Grossman R, Weingart JD, Olivi A, Quiniones-Hinojosa A, Brem H (2011) The efficacy of carmustine wafers for older patients with glioblastoma multiforme: prolonging survival. Neurol Res 33(7):759–764

    PubMed  Google Scholar 

  88. Ewend MG, Sampath P, Williams JA, Tyler BM, Brem H (1998) Local delivery of chemotherapy prolongs survival in experimental brain metastases from breast carcinoma. Neurosurgery 43(5):1185–1193

    CAS  PubMed  Google Scholar 

  89. Ewend MG, Brem S, Gilbert M, Goodkin R, Penar PL, Varia M, Cush S, Carey LA (2007) Treatment of single brain metastasis with resection, intracavity carmustine polymer wafers, and radiation therapy is safe and provides excellent local control. Clin Cancer Res 13(12):3637–3641

    CAS  PubMed  Google Scholar 

  90. Benny O, Menon LG, Ariel G, Goren E, Kim SK, Stewman C, Black PM, Carroll RS, Machluf M (2009) Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth. Clin Cancer Res 15(4):1222–1231

    CAS  PubMed  Google Scholar 

  91. You J, Shao R, Wei X, Gupta S, Li C (2010) Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 6(9):1022–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Tahara K, Kato Y, Yamamoto H, Kreuter J, Kawashima Y (2011) Intracellular drug delivery using polysorbate 80-modified poly(D, L-lactide-co-glycolide) nanospheres to glioblastoma cells. J Microencapsul 28(1):29–36

    CAS  PubMed  Google Scholar 

  93. Ranganath SH, Fu Y, Arifin DY, Kee I, Zheng L, Lee HS, Chow PK, Wang CH (2010) The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials 31(19):5199–5207

    CAS  PubMed  Google Scholar 

  94. Esther Gil-Alegre M, González-Alvarez I, Gutiérrez-Paúls L, Torres-Suárez AI (2008) Three weeks release BCNU loaded hydrophilic-PLGA microspheres for interstitial chemotherapy: development and activity against human glioblastoma cells. J Microencapsul 25(8):561–568

    CAS  PubMed  Google Scholar 

  95. Kantelhardt SR, Caarls W, de Vries AH, Hagen GM, Jovin TM, Schulz-Schaeffer W, Rohde V, Giese A, Arndt-Jovin DJ (2010) Specific visualization of glioma cells in living low-grade tumor tissue. PLoS One 5(6):e11323

    PubMed Central  PubMed  Google Scholar 

  96. Fillmore HL, Shultz MD, Henderson SC, Cooper P, Broaddus WC, Chen ZJ, Shu CY, Zhang J, Ge J, Dorn HC, Corwin F, Hirsch JI, Wilson J, Fatouros PP (2011) Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for targeting and imaging glial tumors. Nanomedicine (Lond) 6(3):449–458

    CAS  Google Scholar 

  97. Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, Swaminathan G, Xiang D, Eberhart C, Hanes J (2012) A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 4(149):149ra119. doi:10.1126/scitranslmed.3003594

    PubMed Central  PubMed  Google Scholar 

  98. Arndt-Jovin DJ, Kantelhardt SR, Caarls W, de Vries AH, Giese A, Jovin Ast TM (2009) Tumor-targeted quantum dots can help surgeons find tumor boundaries. IEEE Trans Nanobioscience 8(1):65–71

    PubMed  Google Scholar 

  99. Tobias A, Ahmed A, Moon KS, Lesniak MS (2013) The art of gene therapy for glioma: a review of the challenging road to the bedside. J Neurol Neurosurg Psychiatry 84(2):213–222

    PubMed Central  PubMed  Google Scholar 

  100. Germano IM, Binello E (2009) Gene therapy as an adjuvant treatment for malignant gliomas: from bench to bedside. J Neurooncol 93(1):79–87, Epub 2009 May 9

    CAS  PubMed  Google Scholar 

  101. Richards Grayson AC, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R (2003) Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2(11):767–772

    PubMed  Google Scholar 

  102. Santini JTJR, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397(6717):335–338

    CAS  PubMed  Google Scholar 

  103. Masi B, Tyler BM, Bow H, Wicks RT, Xue Y, Brem H, Langer R, Cima M (2012) Intracranial MEMS-based temozolomide delivery in a rat gliosarcoma model. Biomaterials 33(23):5768–5775, Epub 2012 May 14

    CAS  PubMed  Google Scholar 

  104. Li Y, Ho Duc HL, Tyler B, Williams T, Tupper M, Langer R, Brem H, Cima MJ (2005) In vivo delivery of BCNU from a MEMS device to a tumor model. J Control Release 106(1–2):138–145

    CAS  PubMed  Google Scholar 

  105. Kim GY, Tyler BM, Tupper MM, Karp JM, Langer RS, Brem H, Cima MJ (2007) Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. J Control Release 123(2):172–178

    CAS  PubMed  Google Scholar 

  106. Scott A, Tyler B, Masi B, Upadhyay U, Patta Y, Grossman R, Basaldella L, Langer R, Brem H, Cima M (2011) Intracranial microcapsule drug delivery device for the treatment of an experimental glioma model. Biomaterials 32(10):2532–2539, Epub 2011 Jan 8

    CAS  PubMed  Google Scholar 

  107. Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50:391–396

    CAS  PubMed  Google Scholar 

  108. Kantoff P, Higano C, Shore N et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    CAS  PubMed  Google Scholar 

  109. Hodi F, O’Day S, McDermott D et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Vauleon E, Avril T, Collet B et al (2010) Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010:1–18

    Google Scholar 

  111. Aguilar L, Arvizu M, Aguilar-Cordova E et al (2012) The spectrum of vaccine therapies for patients with glioblastoma multiforme. Curr Treat Options Oncol 13(4):437–450

    PubMed Central  PubMed  Google Scholar 

  112. Yu J, Wheeler C, Zeltzer P et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 62:842–847

    Google Scholar 

  113. Dillman R, Duma C, PSchiltz P et al (2004) Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother 27(5):398–404

    PubMed  Google Scholar 

  114. Bloom H, Peckham M, Richardson A et al (1973) Glioblastoma multiforme: a controlled trial to assess the value of specific active immunotherapy in patients treated by radical surgery and radiotherapy. Br J Cancer 27(3):253–267

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Sobol R, Fakhrai H, Shawler D et al (1995) Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther 2(2):164–167

    CAS  PubMed  Google Scholar 

  116. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  117. Levy AP, Tamargo R, Brem H, Nathans D (1989) An endothelial cell growth factor from the mouse neuroblastoma cell line NB41. Growth Factors 2(1):9–19

    CAS  PubMed  Google Scholar 

  118. Ferrara N, Henzel W (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161(2):851–858

    CAS  PubMed  Google Scholar 

  119. Presta L, Chen H, O’Connor S et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    CAS  PubMed  Google Scholar 

  120. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 305:2335–2342

    Google Scholar 

  121. Sandler A, Gray R, Perry M et al (2006) Paclitaxel–carboplatin alone or with bevacizumab for non–small-cell lung cancer. N Engl J Med 355:2542–2550

    CAS  PubMed  Google Scholar 

  122. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48(2):347–356

    CAS  PubMed  Google Scholar 

  123. Purow B, Fine H (2004) Progress report on the potential of angiogenesis inhibitors for neuro-oncology. Cancer Invest 22(4):577–587

    CAS  PubMed  Google Scholar 

  124. Kunkel P, Ulbricht U, Bohlen P et al (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 62:6624–6628

    Google Scholar 

  125. Weingart J, Sipos E, Brem H (1995) The role of minocycline in the treatment of intracranial 9L glioma. J Neurosurg 82:635–640

    CAS  PubMed  Google Scholar 

  126. Kirsch M, Strasser J, Allende R et al (1998) Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58:4654–4659

    CAS  PubMed  Google Scholar 

  127. Pradilla G, Legnani FG, Petrangolini G, Francescato P, Chillemi F, Tyler BM, Gaini SM, Brem H, Olivi A, DiMeco F (2005) Local delivery of a synthetic endostatin fragment for the treatment of experimental gliomas. Neurosurgery 57(5):1032–1040, discussion 1032–40

    PubMed Central  PubMed  Google Scholar 

  128. Fine H, Figg W, Jaeckle K et al (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18(4):708–715

    CAS  PubMed  Google Scholar 

  129. Fine H, Wen P, Maher E et al (2003) Phase II trial of thalidomide and carmustine for patients with high-grade gliomas. J Clin Oncol 21(12):2299–2304

    CAS  PubMed  Google Scholar 

  130. Vredenburgh J, Desjardins A, Herndon J et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25(30):4722–4729

    CAS  PubMed  Google Scholar 

  131. Cohen M, Shen Y, Keegan P et al (2009) FDA drug approval summary: bevacizumab (avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14:1131–1138

    CAS  PubMed  Google Scholar 

  132. Wick W, Weller M, van den Bent M et al (2010) Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol 28(12):188–189

    Google Scholar 

  133. van den Bent M, Vogelbaum M, Wen P et al (2009) End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald's criteria. J Clin Oncol 27(18):2905–2908

    PubMed  Google Scholar 

  134. Bansal K, Engelhard HH (2000) Gene therapy for brain tumors. Curr Oncol Rep 2(5):463–472, Review

    CAS  PubMed  Google Scholar 

  135. Rainov NG (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11(17):2389–2401

    CAS  PubMed  Google Scholar 

  136. Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M, Nabors LB, Markiewicz M, Lakeman AD, Palmer CA, Parker JN, Whitley RJ, Gillespie GY (2009) Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 17(1):199–207, Epub 2008 Oct 28

    CAS  PubMed  Google Scholar 

  137. Patel M, Vogelbaum MA, Barnett GH, Jalali R, Ahluwalia MS (2012) Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs 21(9):1247–1266. doi:10.1517/13543784.2012.703177, Epub 2012 Jun 25

    CAS  PubMed  Google Scholar 

  138. van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, Clement PM, Frenay M, Campone M, Baurain JF, Armand JP, Taphoorn MJ, Tosoni A, Kletzl H, Klughammer B, Lacombe D, Gorlia T (2009) Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27(8):1268–1274, Epub 2009 Feb 9

    PubMed  Google Scholar 

  139. Desjardins A, Reardon DA, Coan A, Marcello J, Herndon JE 2nd, Bailey L, Peters KB, Friedman HS, Vredenburgh JJ (2012) Bevacizumab and daily temozolomide for recurrent glioblastoma. Cancer 118(5):1302–1312. doi:10.1002/cncr.26381. Epub 2011 Jul 26

    CAS  PubMed  Google Scholar 

  140. Møller S, Grunnet K, Hansen S, Schultz H, Holmberg M, Sorensen M, Poulsen HS, Lassen U (2012) A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy. Acta Oncol 51(6):797–804, Epub 2012 May 1

    PubMed  Google Scholar 

  141. Burkhardt JK, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, Tsiouris AJ, Boockvar JA (2012) Intra-arterial delivery of bevacizumab after blood–brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg 77(1):130–134, Epub 2011 Nov 21

    PubMed Central  PubMed  Google Scholar 

  142. Lawson HC, Sampath P, Bohan E, Park MC, Hussain N, Olivi A, Weingart J, Kleinberg L, Brem H (2007) Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neurooncol 83(1):61–70

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty M. Tyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Tyler, B.M., Pradilla, G., Hadelsberg, U., Bow, H., Suk, I., Brem, H. (2014). Treatment of Brain Tumors. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_7

Download citation