Skip to main content

Polymer–Drug Conjugate in Focal Drug Delivery

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The area of polymer–drug conjugates is expanding spectacularly in recent years. From macromolecular prodrugs of established anticancer agents to novel targeted polymeric drug conjugate systems, their application has expanded exponentially. Delivery of new anticancer agents, combination therapies, treatment of diseases other than cancer, and novel polymer architectures are highly exciting and promising areas. It is hoped that in the next decade, some of these new approaches will reach clinical evaluation and few will see the light of marketing phase. The successful development of first-generation polymer–drug conjugates in the mid-1980s and 1990s has inspired more recent studies assessing their potential as drug delivery platforms for combination therapy. These early works unveiled unexpected therapeutic benefits but raised new issues, in particular in relation to “system design.” A better understanding of how drug combinations impact on cellular and molecular mechanisms is needed to rationally design new therapeutics. In nutshell it is to be believed that the interdisciplinary scientific approach to the applications of polymer–drug conjugate (PDC) will result in their translation into the clinic within this decade.

Keywords

  • Wheat Germ Agglutinin
  • PAMAM Dendrimer
  • Polymeric Carrier
  • Drug Conjugate
  • Polymer Conjugate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_5
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4

References

  1. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 51:135–153, Wiley Online Library; 2007

    CAS  Google Scholar 

  2. Duncan R, Seymour LCW, Scarlett L, Lloyd JB, Rejmanova P, Kopecek J (1986) Fate of N-(2-hydroxypropyl)methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats. Biochim Biophys Acta (BBA)-General Subjects 880:62–71

    CAS  Google Scholar 

  3. Duncan R, Lloyd JB, Kopecek J (1980) Degradation of side chains of N-(2 hydroxypropyl) methacrylamide copolymers by lysosomal enzymes. Biochem Biophys Res Commun 94:284–290

    CAS  PubMed  Google Scholar 

  4. Duncan R, Kopecek J (1984) Soluble synthetic polymers as potential drug carriers. Adv Polym Sci 57:51–101

    CAS  Google Scholar 

  5. Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JHM, Schot M, Mandjes IAM, Zurlo MG et al (2001) Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 12:315

    CAS  PubMed  Google Scholar 

  6. Vicent MJ, Duncan R (2006) Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol 24:39–47

    CAS  PubMed  Google Scholar 

  7. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R et al (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents—drug-polymer conjugates. Clin Cancer Res 5:83–94

    CAS  PubMed  Google Scholar 

  8. Julyan PJ, Seymour LW, Ferry DR, Daryani S, Boivin CM, Doran J et al (1999) Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J Control Release 57:281–290

    CAS  PubMed  Google Scholar 

  9. Duncan R (2003) The dawning era of polymer. Nat Rev Drug Discov 2:347

    CAS  PubMed  Google Scholar 

  10. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    CAS  PubMed  Google Scholar 

  11. Gros L, Ringsdorf H, Schupp H (2003) Polymeric antitumor agents on a molecular and on a cellular level? Angew Chem Int Ed Engl 20:305–325

    Google Scholar 

  12. Maeda H, Seymour LW, Miyamoto Y (1992) Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem 3:351–362

    CAS  PubMed  Google Scholar 

  13. Pasut G, Veronese F (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961

    CAS  Google Scholar 

  14. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    CAS  PubMed  Google Scholar 

  15. Wagner E, Kloeckner J (2006) Gene delivery using polymer therapeutics. Polym Ther I:135–173

    Google Scholar 

  16. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Therapy 9:1647–1652

    CAS  PubMed  Google Scholar 

  17. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM (2002) Poly (ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 35:3456–3462

    CAS  Google Scholar 

  18. Nitecki DE (1994) Preparation of an activated polymer ester for protein conjugation. United State Patent No. 5281698

    Google Scholar 

  19. Jatzkewitz H (1955) Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine (mescaline). Z Naturforsch 10:27–31

    Google Scholar 

  20. Muelhaupt R (2004) Hermann Staudinger and the origin of macromolecular chemistry. Angew Chem Int Ed 43:1054–1063

    CAS  Google Scholar 

  21. Shumikhina K, Panarin E, Ushakov S (1966) Experimental study of polymer salts of penicillins]. Antibiotiki 11:767

    CAS  PubMed  Google Scholar 

  22. De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F (1974) Commentary. Lysosomotropic agents. Biochem Pharmacol 23:2495

    PubMed  Google Scholar 

  23. Regelson W, Parker G (1986) Clinical science review: the routinization of intraperitoneal (intracavitary) chemotherapy and immunotherapy. Cancer Investig 4:29–42

    CAS  Google Scholar 

  24. Pratten MK, Duncan R, Cable HC, Schnee R, Ringsdorf H, Lloyd JB (1981) Pinocytic uptake of divinyl ether-maleic anhydride (pyran copolymer) and its failure to stimulate pinocytosis. Chem Biol Interact 35:319–330

    CAS  PubMed  Google Scholar 

  25. Qiu LY, Bae YH (2006) Polymer architecture and drug delivery. Pharmaceut Res 23:1–30

    CAS  Google Scholar 

  26. Kumar N, Ravikumar MN, Domb A (2001) Biodegradable block copolymers. Adv Drug Deliv Rev 53:23–44

    CAS  PubMed  Google Scholar 

  27. Tomalia D, Uppuluri S, Swanson D, Brothers H, Piehler L, Li J et al (1998) Dendritic macromolecules: a fourth major class of polymer architecture–new properties driven by architecture. MRS Proceedings. Cambridge University Press

    Google Scholar 

  28. Tomalia DA (2005) The dendritic state. Mater Today 8:34–46

    CAS  Google Scholar 

  29. Buhleier E, Wehner W, Vogtle F (1978) Cascade and nonskid-chain-like synthesis of molecular cavity topologies. Synthesis 2:155–158

    Google Scholar 

  30. Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    CAS  Google Scholar 

  31. Tomalia DA, Naylor AM, Goddard WA III (1990) Starburst dendrimers: molecular‐level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175

    Google Scholar 

  32. de Brabander‐van den Berg E, Meijer E (2003) Poly (propylene imine) dendrimers: large‐scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 32:1308–1311

    Google Scholar 

  33. Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229

    CAS  Google Scholar 

  34. Hawker CJ, Frechet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    CAS  Google Scholar 

  35. Ihre H, Hult A, Söderlind E (1996) Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2, 2-bis (hydroxymethyl) propionic acid and 1, 1, 1-tris (hydroxyphenyl) ethane. J Am Chem Soc 118:6388–6395

    CAS  Google Scholar 

  36. Grinstaff MW (2002) Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry 8:2838–2846

    CAS  Google Scholar 

  37. Turnbull WB, Stoddart JF (2002) Design and synthesis of glycodendrimers. Rev Mol Biotechnol 90:231–255

    CAS  Google Scholar 

  38. D’Emanuele A, Attwood D (2005) Dendrimer–drug interactions. Adv Drug Deliv Rev 57:2147–2162

    PubMed  Google Scholar 

  39. Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceut Res 19:1310–1316

    CAS  Google Scholar 

  40. Xie Z, Guan H, Chen X, Lu C, Chen L, Hu X et al (2007) A novel polymer–paclitaxel conjugate based on amphiphilic triblock copolymer. J Control Release 117:210–216

    CAS  PubMed  Google Scholar 

  41. Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Release 100:247–256

    CAS  PubMed  Google Scholar 

  42. Greenwald R (2001) PEG drugs: an overview. J Control Release 74:159–171

    CAS  PubMed  Google Scholar 

  43. Hooftman G, Herman S, Schacht E (1996) Review: poly (ethylene glycol)s with reactive end groups. II. Practical consideration for the preparation of protein-PEG conjugates. J Bioact Compat Polym 11:135–159

    CAS  Google Scholar 

  44. Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N et al (2006) Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem 17:1464–1472

    CAS  PubMed  Google Scholar 

  45. Rihova B (2009) Clinical experience with anthracycline antibiotics–HPMA copolymer–human immunoglobulin conjugates. Adv Drug Deliv Rev 61:1149–1158

    CAS  PubMed  Google Scholar 

  46. Kopecek J, Kopeckova P, Minko T, Lu ZR (2000) HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 50:61–81

    CAS  PubMed  Google Scholar 

  47. Sakuma S, Lu ZR, Kopeckova P, Kopecek J (2001) Biorecognizable HPMA copolymer–drug conjugates for colon-specific delivery of 9-aminocamptothecin. J Control Release 75:365–379

    CAS  PubMed  Google Scholar 

  48. Etrych T, Kovar L, Strohalm J, Chytil P, Ríhova B, Ulbrich K (2011) Biodegradable star HPMA polymer–drug conjugates: biodegradability, distribution and anti-tumor efficacy. J Control Release 154:241–248

    CAS  PubMed  Google Scholar 

  49. Dvorak M, Kopeckova P, Kopecek J (1999) High-molecular weight HPMA copolymer–adriamycin conjugates. J Control Release 60:321–332

    CAS  PubMed  Google Scholar 

  50. Chytil P, Etrych T, Konak C, Sírova M, Mrkvan T, Ríhova B et al (2006) Properties of HPMA copolymer-doxorubicin conjugates with pH-controlled activation: effect of polymer chain modification. J Control Release 115:26

    CAS  PubMed  Google Scholar 

  51. Etrych T, Subr V, Strohalm J, Sirova M, Rihova B, Ulbrich K (2012) HPMA copolymer-doxorubicin conjugates: the effects of molecular weight and architecture on biodistribution and in vivo activity. J Control Release 164(3):346–354

    CAS  PubMed  Google Scholar 

  52. Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715

    CAS  PubMed  Google Scholar 

  53. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH et al (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 141:2–12

    CAS  PubMed  Google Scholar 

  54. Campo GM, Avenoso A, Campo S, D’Ascola A, Nastasi G, Calatroni A (2010) Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie 92:204

    CAS  PubMed  Google Scholar 

  55. Harish Prashanth K, Tharanathan R (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131

    Google Scholar 

  56. Synytsya A, Blafkova P, Copíkova J, Spevacek J, Uher M (2008) Conjugation of kojic acid with chitosan. Carbohydr Polym 72:21–31

    CAS  Google Scholar 

  57. Kovar M, Strohalm J, Ulbrich K, Rihova B (2002) In vitro and in vivo effect of HPMA copolymer-bound doxorubicin targeted to transferrin receptor of B-cell lymphoma 38C13. J Drug Target 10:23–30

    CAS  PubMed  Google Scholar 

  58. Khandare J, Minko T (2006) Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 31:359–397

    CAS  Google Scholar 

  59. Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22:492–501

    CAS  PubMed  Google Scholar 

  60. Hermanson GT (1996) Bioconjugate techniques. Academic

    Google Scholar 

  61. Leriche G, Chisholm L, Wagner A (2012) Cleavable linkers in chemical biology. Bioorg Med Chem 20:571–582

    CAS  PubMed  Google Scholar 

  62. Greco F, Vicent MJ (2009) Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 61:1203–1213

    CAS  PubMed  Google Scholar 

  63. Klee JE (2005) Mass spectrometry of step-growth polymers. Eur J Mass Spectrom 11:591–610

    CAS  Google Scholar 

  64. Paul A, Vicent MJ, Duncan R (2007) Using small-angle neutron scattering to study the solution conformation of N-(2-hydroxypropyl) methacrylamide copolymer-doxorubicin conjugates. Biomacromolecules 8:1573–1579

    CAS  PubMed  Google Scholar 

  65. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Önyüksel H (2004) In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharmaceut Sci 93:2476–2487

    CAS  Google Scholar 

  66. Ferguson EL, De Luca E, Heenan RK, King SM, Griffiths PC (2010) Time‐resolved small‐angle neutron scattering as a tool for studying controlled release from liposomes using polymer‐enzyme conjugates. Macromol Rapid Commun 31:1685–1690

    CAS  PubMed  Google Scholar 

  67. Duncan R, Vicent MJ, Greco F, Nicholson RI (2005) Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer 12:S189–S199

    CAS  PubMed  Google Scholar 

  68. Li C, Wallace S (2008) Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 60:886–898

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D et al (2004) Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 90:2085–2091

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Schluep T, Cheng J, Khin KT, Davis ME (2006) Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemother Pharmacol 57:654–662

    CAS  PubMed  Google Scholar 

  71. Yang D, Yu L, Van S (2011) Clinically relevant anticancer polymer paclitaxel therapeutics. Cancers 3:17–42

    CAS  PubMed Central  Google Scholar 

  72. Hayashi Y, Skwarczynski M, Hamada Y, Sohma Y, Kimura T, Kiso Y (2003) A novel approach of water-soluble paclitaxel prodrug with no auxiliary and no byproduct: design and synthesis of isotaxel. J Med Chem 46:3782–3784

    CAS  PubMed  Google Scholar 

  73. Campone M, Rademaker-Lakhai JM, Bennouna J, Howell SB, Nowotnik DP, Beijnen JH et al (2007) Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemother Pharmacol 60:523–533

    CAS  PubMed  Google Scholar 

  74. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250

    CAS  PubMed  Google Scholar 

  75. Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B et al (2006) Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res 12:1606–1614

    CAS  PubMed  Google Scholar 

  76. Soepenberg O, de Jonge MJA, Sparreboom A, de Bruin P, Eskens FALM, de Heus G et al (2005) Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors. Clin Cancer Res 11:703–711

    CAS  PubMed  Google Scholar 

  77. Ochi Y, Shiose Y, Kuga H, Kumazawa E (2005) A possible mechanism for the long-lasting antitumor effect of the macromolecular conjugate DE-310: mediation by cellular uptake and drug release of its active camptothecin analog DX-8951. Cancer Chemother Pharmacol 55:323–332

    CAS  PubMed  Google Scholar 

  78. Springett GM, Takimoto C, McNamara M, Doroshow JH, Syed S, Eastham E et al (2004) Phase I study of CT-2106 (polyglutamate camptothecin) in patients with advanced malignancies. J Clin Oncol 22:3127

    Google Scholar 

  79. Kumazawa E, Ochi Y (2005) DE-310, a novel macromolecular carrier system for the camptothecin analog DX-8951f: potent antitumor activities in various murine tumor models. Cancer Sci 95:168–175

    Google Scholar 

  80. Homsi J, Simon GR, Garrett CR, Springett G, De Conti R, Chiappori AA et al (2007) Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res 13:5855–5861

    CAS  PubMed  Google Scholar 

  81. Hoes CJT, Grootoonk J, Duncan R, Hume IC, Bhakoo M, Bouma JMW et al (1993) Biological properties of adriamycin bound to biodegradable polymeric carriers. J Control Release 23:37–53

    CAS  Google Scholar 

  82. Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917

    CAS  PubMed  Google Scholar 

  83. O’Hare K, Duncan R, Strohalm J, Ulbrich K, Kopeckova P (1993) Polymeric drug-carriers containing doxorubicin and melanocyte-stimulating hormone: in vitro and in vivo evaluation against murine melanoma. J Drug Target 1:217–229

    PubMed  Google Scholar 

  84. Omelyanenko V, Kopeckova P, Prakash RK, Ebert CD, Kopecek J (1999) Biorecognition of HPMA copolymer-adriamycin conjugates by lymphocytes mediated by synthetic receptor binding epitopes. Pharmaceut Res 16:1010–1019

    CAS  Google Scholar 

  85. Line BR, Mitra A, Nan A, Ghandehari H (2005) Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. J Nucl Med 46:1552–1560

    CAS  PubMed  Google Scholar 

  86. Ríhova B, Strohalm J, Prausova J, Kubackova K, Jelinkova M, Rozprimova L et al (2003) Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data. J Control Release 91:1–16

    PubMed  Google Scholar 

  87. Kopecek J (2013) Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 65(1):49–59

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Nan A, Croft SL, Yardley V, Ghandehari H (2004) Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. J Control Release 94:115–127

    CAS  PubMed  Google Scholar 

  89. Ehrenfreund-Kleinman T, Golenser J, Domb AJ (2004) Conjugation of amino-containing drugs to polysaccharides by tosylation: amphotericin B–arabinogalactan conjugates. Biomaterials 25:3049–3057

    CAS  PubMed  Google Scholar 

  90. Ehrenfreund-Kleinman T, Domb AJ, Jaffe CL, Nasereddin A, Leshem B, Golenser J (2005) The effect of amphotericin b derivatives on Leishmania and immune functions. J Parasitol 91:158–163

    CAS  PubMed  Google Scholar 

  91. Sokolsky-Papkov M, Domb AJ, Golenser J (2006) Impact of aldehyde content on amphotericin B-dextranimine conjugate toxicity. Biomacromolecules 7:1529–1535

    CAS  PubMed  Google Scholar 

  92. Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G et al (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Mar Drugs 9:1187–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Wang D, Sima M, Mosley RL, Davda JP, Tietze N, Miller SC et al (2006) Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl) methacrylamide copolymers. Mol Pharmaceut 3:717–725

    CAS  Google Scholar 

  94. Miller SC, Pan H, Wang D, Bowman BM, Kopeckova P, Kopecek J (2008) Feasibility of using a bone-targeted, macromolecular delivery system coupled with prostaglandin E 1 to promote bone formation in aged, estrogen-deficient rats. Pharmaceut Res 25:2889–2895

    CAS  Google Scholar 

  95. Gabriel D, Zuluaga MF, Van Den Bergh H, Gurny R, Lange N (2011) It is all about proteases: from drug delivery to in vivo imaging and photomedicine. Curr Med Chem 18:1785–1805

    CAS  PubMed  Google Scholar 

  96. Liu XM, Miller SC, Wang D (2010) Beyond oncology – application of HPMA copolymers in non-cancerous diseases. Adv Drug Deliv Rev 62:258–271

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Liu XM, Quan LD, Tian J, Alnouti Y, Fu K, Thiele GM et al (2008) Synthesis and evaluation of a well-defined HPMA copolymer-dexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharmaceut Res 25:2910–2919

    CAS  Google Scholar 

  98. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–30

    CAS  PubMed  Google Scholar 

  99. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    CAS  PubMed  Google Scholar 

  100. Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551

    CAS  PubMed  Google Scholar 

  101. Rajender Reddy K, Modi MW, Pedder S (2002) Use of peginterferon alfa-2a (40 KD)(Pegasys) for the treatment of hepatitis C. Adv Drug Deliv Rev 54:571–586

    CAS  PubMed  Google Scholar 

  102. Zeuzem S, Feinman SV, Rasenack J, Heathcote EJ, Lai MY, Gane E et al (2000) Peginterferon alfa-2a in patients with chronic hepatitis C. New Engl J Med 343:1666–1672

    CAS  PubMed  Google Scholar 

  103. Parkinson C, Scarlett J, Trainer PJ (2003) Pegvisomant in the treatment of acromegaly. Adv Drug Deliv Rev 55:1303–1314

    CAS  PubMed  Google Scholar 

  104. Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharmaceut Des 10:1235–1244

    CAS  Google Scholar 

  105. Nori A, Kopecek J (2005) Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv Drug Deliv Rev 57:609–636

    CAS  PubMed  Google Scholar 

  106. Jiang YH, Emau P, Cairns JS, Flanary L, Morton WR, McCarthy TD et al (2005) SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res Human Retroviruses 21:207–213

    CAS  Google Scholar 

  107. Liu Y, Li J, Shao K, Huang R, Ye L, Lou J et al (2010) A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 31:5246–5257

    CAS  PubMed  Google Scholar 

  108. Santos JL, Oliveira H, Pandita D, Rodrigues J, Pego AP, Granja PL et al (2010) Functionalization of poly (amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Control Release 144:55–64

    CAS  PubMed  Google Scholar 

  109. He H, Li Y, Jia XR, Du J, Ying X, Lu WL et al (2011) PEGylated poly (amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32:478–487

    CAS  PubMed  Google Scholar 

  110. Jevprasesphant R, Penny J, Attwood D, McKeown NB, D’Emanuele A (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharmaceut Res 20:1543–1550

    CAS  Google Scholar 

  111. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown N, D’Emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266

    CAS  PubMed  Google Scholar 

  112. Najlah M, Freeman S, Attwood D, D’Emanuele A (2007) Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-gp substrates. Bioconjug Chem 18:937–946

    CAS  PubMed  Google Scholar 

  113. Yuan Q, Lee E, Yeudall WA, Yang H (2010) Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncol 46:698–704

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Thomas TP, Shukla R, Kotlyar A, Kukowska-Latallo J, Baker JR (2010) Dendrimer-based tumor cell targeting of fibroblast growth factor-1. Bioorg Med Chem Lett 20:700–703

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Yang W, Cheng Y, Xu T, Wang X, L-p W (2009) Targeting cancer cells with biotin–dendrimer conjugates. Eur J Med Chem 44:862–868

    CAS  PubMed  Google Scholar 

  116. Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y (2011) RGD-modified PEG–PAMAM–DOX conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm 79:232–240

    CAS  PubMed  Google Scholar 

  117. Bhadra D, Bhadra S, Jain S, Jain N (2003) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257:111–124

    CAS  PubMed  Google Scholar 

  118. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2003) In vitro and in vivo gene transfer by an optimized alpha-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjug Chem 14:342–350

    CAS  PubMed  Google Scholar 

  119. Venuganti VVK, Perumal OP (2008) Effect of poly (amidoamine)(PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int J Pharm 361:230–238

    CAS  PubMed  Google Scholar 

  120. Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain N et al (2003) Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release 90:335–343

    CAS  PubMed  Google Scholar 

  121. Borowska K, Laskowska B, Magon A, Mysliwiec B, Pyda M, Wołowiec S (2010) PAMAM dendrimers as solubilizers and hosts for 8-methoxypsoralene enabling transdermal diffusion of the guest. Int J Pharm 398:185–189

    CAS  PubMed  Google Scholar 

  122. Yiyun C, Na M, Tongwen X, Rongqiang F, Xueyuan W, Xiaomin W et al (2006) Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharmaceut Sci 96:595–602

    Google Scholar 

  123. Wiwattanapatapee R, Lomlim L, Saramunee K (2003) Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release 88:1–9

    CAS  PubMed  Google Scholar 

  124. Spataro G, Malecaze F, Turrin C-O, Soler V, Duhayon C, Elena P-P et al (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45:326–334

    CAS  PubMed  Google Scholar 

  125. Vandamme TF, Brobeck L (2005) Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38

    CAS  PubMed  Google Scholar 

  126. Dong Z, Katsumi H, Sakane T, Yamamoto A (2010) Effects of polyamidoamine (PAMAM) dendrimers on the nasal absorption of poorly absorbable drugs in rats. Int J Pharm 393:245–253

    Google Scholar 

  127. Jain K, Kesharwani P, Gupta U, Jain N (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    CAS  PubMed  Google Scholar 

  128. Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    CAS  PubMed  Google Scholar 

  129. Gee JMW, Howell A, Gullick WJ, Benz CC, Sutherland RL, Santen RJ et al (2005) Consensus statement. Endocr Relat Cancer 12:S1–S7

    CAS  PubMed  Google Scholar 

  130. Santucci L, Mencarelli A, Renga B, Pasut G, Veronese F, Zacheo A et al (2006) Nitric oxide modulates proapoptotic and antiapoptotic properties of chemotherapy agents: the case of NO-pegylated epirubicin. FASEB J 20:765–767

    CAS  PubMed  Google Scholar 

  131. Saad M, Garbuzenko OB, Ber E, Chandna P, Khandare JJ, Pozharov VP et al (2008) Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release 130:107–114

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Nemunaitis J, Cunningham C, Senzer N, Gray M, Oldham F, Pippen J et al (2005) Phase I study of CT-2103, a polymer-conjugated paclitaxel, and carboplatin in patients with advanced solid tumors. Cancer Investig 23:671–676

    CAS  Google Scholar 

  133. Greco F, Vicent MJ (2008) Polymer-drug conjugates: current status and future trends. Front Biosci 13:2744–2756

    CAS  PubMed  Google Scholar 

  134. Shiah JG, Sun Y, Kopeckova P, Peterson CM, Straight RC, Kopecek J (2001) Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e(6)-OV-TL 16 antibody immunoconjugates. J Control Release 74:249–253

    CAS  PubMed  Google Scholar 

  135. Satchi R, Connors TA, Duncan R (2001) PDEPT: polymer-directed enzyme prodrug therapy. Br J Cancer 85:1070

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65(1):60–70

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Shastri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Swami, R., Kumar, D., Khan, W., Sistla, R., Shastri, N. (2014). Polymer–Drug Conjugate in Focal Drug Delivery. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_5

Download citation