Skip to main content

Liposomal Formulations for Focal and Targeted Drug Delivery in Cancer and Other Diseases

  • 2696 Accesses

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

As scientists in the field of drug delivery, the endeavor to constantly improve strategies for the specific delivery of the drug to its target cannot be over exaggerated! This field has been evolving constantly and has now come a long way from the classic small molecules to targeted drug delivery systems and now, one of the most recent transformations, “Focal drug delivery” (FDD). From recent literature that will be described in the course of this chapter, it could be derived that FDD is a drug delivery scheme to “encapsulate the drug to form a non-leaky/inert package and then zap it with ultrasound (US) at the desired site for therapeutic action.” This chapter will mainly focus on liposomes as the drug-packing agents for FDD, mainly dealing with cancer therapy, but will also include several other recent non-cancer-related therapies that employ liposomal focal drug delivery (LFDD). Also, from available literature, focused ultrasound, i.e., ultrasound (US) that can be narrowed to a small foci of interest, seems to be the rational choice for zapping the liposomal carrier to preclude off-target effects. However, there are several studies that have successfully shown FDD using clinical grade US. All such studies related to application of LFDD in cancer therapy will be covered first in this manuscript followed by the application of LFDD to non-cancer therapies.

Keywords

  • Drug Delivery
  • Drug Release
  • Focus Ultrasound
  • Target Drug Delivery
  • Liposomal Membrane

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6

References

  1. Jain KK (2005) Editorial: targeted drug delivery for cancer. Technol Cancer Res Treat 4(4):311–3

    CAS  PubMed  Google Scholar 

  2. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41(1):189–207

    CAS  PubMed  Google Scholar 

  3. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–63

    CAS  PubMed  Google Scholar 

  4. Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    CAS  PubMed  Google Scholar 

  5. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    CAS  PubMed  Google Scholar 

  6. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    CAS  PubMed  Google Scholar 

  7. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    CAS  PubMed  Google Scholar 

  8. Frieboes H, Sinek J et al (2006) Nanotechnology in Cancer Drug Therapy: A Biocomputational Approach. BioMEMS and Biomedical Nanotechnology. M. Ferrari, A. Lee and L. J. Lee, Springer US: 435–460

    Google Scholar 

  9. Huynh NT et al (2010) The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine 5(9):1415–1433

    CAS  PubMed  Google Scholar 

  10. Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162(1–2):1–16

    CAS  PubMed  Google Scholar 

  11. Deckers R, Moonen CTW (2010) Ultrasound triggered, image guided, local drug delivery. J Control Release 148(1):25–33

    CAS  PubMed  Google Scholar 

  12. Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60(10):1193–1208

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Shuto J, Ichimiya I, Suzuki M (2006) Effects of low-intensity focused ultrasound on the mouse submandibular gland. Ultrasound Med Biol 32(4):587–94

    PubMed  Google Scholar 

  14. Ibsen S et al (2012) Ultrasound mediated localized drug delivery. In: Zahavy E et al (eds) Nano-biotechnology for biomedical and diagnostic research. Springer, Netherlands, pp 145–153

    Google Scholar 

  15. Zarnitsyn V, Rostad CA et al (2008) Modeling transmembrane transport through cell membrane wounds created by acoustic cavitation. J Biophys 95(9):4124–4138

    Google Scholar 

  16. Schroeder A et al (2009) Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137(1):63–68

    CAS  PubMed  Google Scholar 

  17. Kennedy JE, ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76(909):590–599

    CAS  PubMed  Google Scholar 

  18. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    CAS  PubMed  Google Scholar 

  19. Torchilin V (2012) Liposomes in drug delivery. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery. Springer, New York, NY, pp 289–328

    Google Scholar 

  20. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419

    CAS  PubMed  Google Scholar 

  21. Yuan F et al (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54(13):3352–3356

    CAS  PubMed  Google Scholar 

  22. Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1146(2):157–168

    CAS  PubMed  Google Scholar 

  23. Kale AA, Torchilin VP (2007) Design, synthesis, and characterization of pH-sensitive PEG − PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the pH stability of PEG − PE conjugates. Bioconjug Chem 18(2):363–370

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Sawant RM et al (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17(4):943–949

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Zalipsky S et al (1999) New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid. Diacyl phosphatidylethanolamine. Bioconjug Chem 10(5):703–707

    CAS  PubMed  Google Scholar 

  26. Moghimi SM et al (2010) Complement activation cascade triggered by PEG–PL engineered nanomedicines and carbon nanotubes: The challenges ahead. J Control Release 146(2):175–181

    CAS  PubMed  Google Scholar 

  27. Chanan-Khan A et al (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil®): possible role in hypersensitivity reactions. Ann Oncol 14(9):1430–1437

    CAS  PubMed  Google Scholar 

  28. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    CAS  PubMed  Google Scholar 

  29. Park JW et al (2001) Tumor targeting using anti-her2 immunoliposomes. J Control Release 74(1–3):95–113

    CAS  PubMed  Google Scholar 

  30. Gupta B, Torchilin V (2007) Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 56(8):1215–1223

    CAS  PubMed  Google Scholar 

  31. ElBayoumi TA, Torchilin VP (2008) Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Mol Pharm 6(1):246–254

    Google Scholar 

  32. ElBayoumi TA, Torchilin VP (2009) Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clin Cancer Res 15(6):1973–1980

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Raffaghello L et al (2003) Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Lett 197(1–2):151–155

    CAS  PubMed  Google Scholar 

  34. Mamot C et al (2005) Epidermal growth factor receptor–targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65(24):11631–11638

    CAS  PubMed  Google Scholar 

  35. Mamot C et al (2006) EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J Drug Target 14(4):215–223

    CAS  PubMed  Google Scholar 

  36. Iinuma H et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99(1):130–137

    CAS  PubMed  Google Scholar 

  37. Ishida O et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18(7):1042–1048

    CAS  PubMed  Google Scholar 

  38. Joshee N, Bastola DR, Cheng PW (2002) Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Hum Gene Ther 13(16):1991–2004

    CAS  PubMed  Google Scholar 

  39. Tan PH et al (2003) Antibody targeted gene transfer to endothelium. J Gene Med 5(4):311–323

    CAS  PubMed  Google Scholar 

  40. Xu L et al (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes 1 this work was supported in part by National Cancer Institute Grant R01 CA45158 (to E. C.), National Cancer Institute Small Business Technology Transfer Phase I Grant R41 CA80449 (to E. C.), and a grant from SynerGene Therapeutics, Inc.1. Mol Cancer Ther 1(5):337–346

    CAS  PubMed  Google Scholar 

  41. Gabizon A et al (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Adv Drug Deliv Rev 56(8):1177–1192

    CAS  PubMed  Google Scholar 

  42. Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269(5):3198–3204

    CAS  PubMed  Google Scholar 

  43. Low YLPS (2002) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51(3):153–162

    PubMed  Google Scholar 

  44. Reddy JA et al (2002) Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9(22):1542–50

    CAS  PubMed  Google Scholar 

  45. Schiffelers RM et al (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91(1–2):115–122

    CAS  PubMed  Google Scholar 

  46. Jayanna PK, Torchilin VP, Petrenko VA (2009) Liposomes targeted by fusion phage proteins. Nanomed Nanotechnol Biol Med 5(1):83–89

    CAS  Google Scholar 

  47. Terada T et al (2007) Optimization of tumor-selective targeting by basic fibroblast growth factor-binding peptide grafted PEGylated liposomes. J Control Release 119(3):262–70

    CAS  PubMed  Google Scholar 

  48. Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci 93(24):14164–14169

    CAS  PubMed  Google Scholar 

  49. Mastrobattista E et al (2002) Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 277(30):27135–27143

    CAS  PubMed  Google Scholar 

  50. Scott RC et al (2007) Targeted delivery of antibody conjugated liposomal drug carriers to rat myocardial infarction. Biotechnol Bioeng 96(4):795–802

    CAS  PubMed  Google Scholar 

  51. D’Souza G et al (2008) Surface modification of pharmaceutical nanocarriers with ascorbate residues improves their tumor-cell association and killing and the cytotoxic action of encapsulated paclitaxel in vitro. Pharm Res 25(11):2567–2572

    PubMed  Google Scholar 

  52. Simões S et al (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56(7):947–965

    PubMed  Google Scholar 

  53. Fattal E, Couvreur P, Dubernet C (2004) “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev 56(7):931–946

    CAS  PubMed  Google Scholar 

  54. Gomes-da-Silva LC et al (2012) Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res 45(7):1163–71

    CAS  PubMed  Google Scholar 

  55. Kakudo T et al (2004) Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system†. Biochemistry 43(19):5618–5628

    CAS  PubMed  Google Scholar 

  56. Turk MJ et al (2002) Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim Biophys Acta 1559(1):56–68

    CAS  PubMed  Google Scholar 

  57. Gorodetsky R et al (2004) Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini. J Control Release 95(3):477–488

    CAS  PubMed  Google Scholar 

  58. Torchilin VP et al (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci 98(15):8786–8791

    CAS  PubMed  Google Scholar 

  59. Tseng Y-L, Liu J-J, Hong R-L (2002) Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and Tat: a kinetic and efficacy study. Mol Pharmacol 62(4):864–872

    CAS  PubMed  Google Scholar 

  60. Boddapati SV et al (2008) Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8(8):2559–2563

    CAS  PubMed  Google Scholar 

  61. Boddapati SV et al (2005) Mitochondriotropic liposomes. J Liposome Res 15(1–2):49–58

    CAS  PubMed  Google Scholar 

  62. Patel NR et al (2010) Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J Liposome Res 20(3):244–249

    CAS  PubMed  Google Scholar 

  63. Lasic DD, Vallner JJ, Working PK (1999) Sterically stabilized liposomes in cancer therapy and gene delivery. Curr Opin Mol Ther 1(2):177–85

    CAS  PubMed  Google Scholar 

  64. Audouy SAL et al (2002) Invivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 19(11):1599–1605

    CAS  PubMed  Google Scholar 

  65. Smyth Templeton N (2002) Cationic liposome-mediated gene delivery in vivo. Biosci Rep 22(2):283–295

    Google Scholar 

  66. Brignole C et al (2003) Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Lett 197(1–2):231–235

    CAS  PubMed  Google Scholar 

  67. Ko YT, Falcao C, Torchilin VP (2009) Cationic liposomes loaded with proapoptotic peptide d-(KLAKLAK)2 and Bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anticancer therapy. Mol Pharm 6(3):971–977

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Landen CN, Merritt WM et al (2006) Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biology & Therapy 5(12):1708–1713

    Google Scholar 

  69. Zhang C et al (2006) siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 112(2):229–239

    CAS  PubMed  Google Scholar 

  70. Judge AD et al (2009) Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 119(3):661

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Pirollo KF, Chang EH (2008) Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res 68(5):1247–1250

    CAS  PubMed  Google Scholar 

  72. Kapoor M, Burgess DJ (2012) Efficient and safe delivery of siRNA using anionic lipids: formulation optimization studies. Int J Pharm 432(1–2):80–90

    CAS  PubMed  Google Scholar 

  73. Christensen D et al (2011) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 10(4):513–21

    CAS  PubMed  Google Scholar 

  74. Cormode DP et al (2009) Nanotechnology in medical imaging. Arterioscler Thromb Vasc Biol 29(7):992–1000

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Oku N et al (2011) PET imaging of brain cancer with positron emitter-labeled liposomes. Int J Pharm 403(1):170–177

    CAS  PubMed  Google Scholar 

  76. Sofou S, Sgouros G (2008) Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 5(2):189–204

    CAS  PubMed  Google Scholar 

  77. Fonseca MJ et al (2003) Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm Res 20(3):423–428

    CAS  PubMed  Google Scholar 

  78. Storm G et al (1997) Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs. Adv Drug Deliv Rev 24(2–3):225–231

    CAS  Google Scholar 

  79. Oku N et al (1997) Application of long-circulating liposomes to cancer photodynamic therapy. Biol Pharm Bull 20(6):670–3

    CAS  PubMed  Google Scholar 

  80. Derycke ASL, de Witte PAM (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56(1):17–30

    CAS  PubMed  Google Scholar 

  81. Chen B, Pogue BW, Hasan T (2005) Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv 2(3):477–487

    CAS  PubMed  Google Scholar 

  82. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    CAS  PubMed  Google Scholar 

  83. Tacker J, Anderson R (1982) Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia. J Urol 127(6):1211

    CAS  PubMed  Google Scholar 

  84. Kong G et al (2000) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 60(24):6950

    CAS  PubMed  Google Scholar 

  85. De Zwart J, et al (2000) On the feasibility of local drug delivery using thermo-sensitive liposomes and MR-guided focused ultrasound. Proceedings of the International Society for Magnetic Resonance in Medicine, Denver

    Google Scholar 

  86. Zhang C et al (2007) Pilot study on combined cancer therapy by thermo-sensitive liposomes and ultrasound phased arrays induced heating. In: Magjarevic R, Nagel JH (eds) World congress on medical physics and biomedical engineering 2006. Springer, Berlin, pp 3238–3242

    Google Scholar 

  87. Treat LH et al (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121(4):901–907

    CAS  PubMed  Google Scholar 

  88. Dromi S et al (2007) Pulsed-high intensity focused ultrasound and Low temperature–sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13(9):2722–2727

    CAS  PubMed Central  PubMed  Google Scholar 

  89. de Smet M et al (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150(1):102–10

    PubMed  Google Scholar 

  90. Ranjan A et al (2012) Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 158(3):487–494

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Negussie AH et al (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia 27(2):140–155

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Huang S-L, MacDonald RC (2004) Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta 1665(1–2):134–141

    CAS  PubMed  Google Scholar 

  93. Lentacker I et al (2009) Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther 18(1):101–108

    PubMed  Google Scholar 

  94. Klibanov AL et al (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 148(1):13–17

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Schlicher RK et al (2006) Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 32(6):915–924

    PubMed  Google Scholar 

  96. Bystritsky A et al (2011) A review of low-intensity focused ultrasound pulsation. Brain Stimul 4(3):125–136

    PubMed  Google Scholar 

  97. Kheirolomoom A et al (2007) Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Control Release 118(3):275–284

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Lin HY, Thomas JL (2003) PEG-lipids and oligo (ethylene glycol) surfactants enhance the ultrasonic permeabilizability of liposomes. Langmuir 19(4):1098–1105

    CAS  Google Scholar 

  99. Cohen-Levi D, Kost J, Barenholz Y (2000) Ultrasound for targeted delivery of cytotoxic drugs from liposomes. M.Sc. Thesis (Kost, J., Barenholz, Y., supervisors), Faculty of Engineering Sciences, Ben Gurion University, Beer Sheva, Israel

    Google Scholar 

  100. Pong M et al (2006) In vitro ultrasound-mediated leakage from phospholipid vesicles. Ultrasonics 45(1):133–145

    CAS  PubMed  Google Scholar 

  101. Schroeder A et al (2007) Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 23(7):4019–4025

    CAS  PubMed  Google Scholar 

  102. Shalaev EY, Steponkus PL (1999) Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. Biochim Biophys Acta 1419(2):229–247

    CAS  PubMed  Google Scholar 

  103. Roux E et al (2002) Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer. J Pharm Sci 91(8):1795–1802

    CAS  PubMed  Google Scholar 

  104. Perry RR et al (1993) Glutathione levels and variability in breast tumors and normal tissue. Cancer 72(3):783–7

    CAS  PubMed  Google Scholar 

  105. Russo A et al (1986) Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res 46(6):2845–2848

    CAS  PubMed  Google Scholar 

  106. Kirpotin D et al (1996) Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 388(2–3):115–118

    CAS  PubMed  Google Scholar 

  107. Ong W et al (2008) Redox-triggered contents release from liposomes. J Am Chem Soc 130(44):14739–14744

    CAS  PubMed Central  PubMed  Google Scholar 

  108. West KR, Otto S (2005) Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol 2(3):123–160

    CAS  PubMed  Google Scholar 

  109. Kubo T et al (2000) Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int J Oncol 17(2):309–15

    CAS  PubMed  Google Scholar 

  110. Kubo T et al (2001) Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int J Oncol 18(1):121–5

    CAS  PubMed  Google Scholar 

  111. Pradhan P et al (2010) Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142(1):108–121

    CAS  PubMed  Google Scholar 

  112. Staruch R, Chopra R, Hynynen K (2011) Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 27(2):156–171

    CAS  PubMed  Google Scholar 

  113. Staruch R, Chopra R, Hynynen K (2011) MRI-controlled ultrasound thermal therapy. IEEE Pulse 2(5):39–47

    Google Scholar 

  114. Buchanan KD et al (2010) Encapsulation of NF-κB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release. J Control Release 141(2):193–198

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Huang S-L (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60(10):1167–1176

    CAS  PubMed  Google Scholar 

  116. Laing ST et al (2011) Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator–loaded echogenic liposomes in an in vivo rabbit aorta thrombus model—brief report. Arterioscler Thromb Vasc Biol 31(6):1357–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Gareus R et al (2008) Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 8(5):372–83

    CAS  PubMed  Google Scholar 

  118. Chen Z-Y et al (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. J Ultrasound Med 30(9):1247–1258

    PubMed  Google Scholar 

  119. Nahire R et al (2012) Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes. Mol Pharm 9(9):2554–2564

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Huang S-L et al (2009) Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia. J Am Coll Cardiol 54(7):652–659

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Li T et al (2010) Targeting therapy of choroidal neovascularization by use of polypeptide- and PEDF-loaded immunoliposomes under ultrasound exposure. J Huazhong Univ Sci Technolog Med Sci 30(6):798–803

    PubMed  Google Scholar 

  122. Endo-Takahashi Y et al (2012) Efficient siRNA delivery using novel siRNA-loaded bubble liposomes and ultrasound. Int J Pharm 422(1–2):504–509

    CAS  PubMed  Google Scholar 

  123. Kee PH et al (2008) Synthesis, acoustic stability, and pharmacologic activities of papaverine-loaded echogenic liposomes for ultrasound controlled drug delivery. J Liposome Res 18(4):263–277

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Kopechek JA et al (2008) Ultrasound-mediated release of hydrophilic and lipophilic agents from echogenic liposomes. J Ultrasound Med 27(11):1597–1606

    PubMed Central  PubMed  Google Scholar 

  125. Marxer EEJ et al (2011) Development and characterization of new nanoscaled ultrasound active lipid dispersions as contrast agents. Eur J Pharm Biopharm 77(3):430–437

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Essex, S., Torchilin, V. (2014). Liposomal Formulations for Focal and Targeted Drug Delivery in Cancer and Other Diseases. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_4

Download citation