Skip to main content

Systemic Targeting Systems-EPR Effect, Ligand Targeting Systems

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

There are different targeting systems including polymeric nanoparticles, liposomes, polymersomes, and solid lipid nanoparticles which have been evaluated for tumor targeting. These systems make use of various drug targeting strategies, viz., passive, active, and triggered targeting. The current chapter is divided into three parts: part one describes various drug targeting strategies which is followed by part two dedicated to understand the role of EPR effect in tumor targeting and important endogenous factors that can positively impact EPR effect in tumor tissue. The third part principally focuses on ligand targeting systems for the treatment of various malignancies, including breast, colorectal, lung, and prostate cancers. The ligand targeting systems discussed in this chapter are majorly based on the targeting ligands such as carbohydrates, proteins, antibodies, aptamers, and small molecules.

Keywords

  • Vascular Endothelial Growth Factor
  • Epidermal Growth Factor Receptor
  • Visceral Leishmaniasis
  • Folate Receptor
  • Reduce Folate Carrier

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_3
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5

References

  1. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(Suppl 2):S81–S91

    CAS  PubMed  Google Scholar 

  2. Bae YH, Park K (2012) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Google Scholar 

  3. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    CAS  PubMed  Google Scholar 

  4. Chattopadhyay N, Fonge H, Cai Z, Scollard D, Lechtman E, Done SJ et al (2012) Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol Pharm 9:2168–2179

    CAS  PubMed  Google Scholar 

  5. Duan J, Liu M, Zhang Y, Zhao J, Pan Y, Yang X (2012) Folate-decorated chitosan/doxorubicin poly (butyl) cyanoacrylate nanoparticles for tumor-targeted drug delivery. J Nanopart Res 14:1–9

    Google Scholar 

  6. Wang HW, Jiang PL, Lin SF, Lin HJ, Ou KL, Deng WP et al (2012) Application of galactose-modified liposomes as a potent antigen presenting cell-targeted carrier for intranasal immunization. Acta Biomater 9:5681–5688

    PubMed  Google Scholar 

  7. Xiao Z, Farokhzad OC (2012) Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. ACS Nano 6:3670–3676

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Yu Y, Pang Z, Lu W, Yin Q, Gao H, Jiang X (2012) Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery. Pharm Res 29:83–96

    CAS  PubMed  Google Scholar 

  9. Zhang Y, Zhang W, Johnston AH, Newman TA, Pyykkö I, Zou J (2012) Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve. Int J Nanomedicine 7:1015–1022

    PubMed Central  PubMed  Google Scholar 

  10. Deepa G, Ashwanikumar N, Pillai JJ, Kumar GS (2012) Polymer nanoparticles—a novel strategy for administration of Paclitaxel in cancer chemotherapy. Curr Med Chem 19:6207–6213

    CAS  PubMed  Google Scholar 

  11. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100:135–144

    CAS  PubMed  Google Scholar 

  12. Jain JP, Kumar N (2010) Development of amphotericin B-loaded polymersomes based on (PEG)3-PLA co-polymers: factors affecting size and in vitro evaluation. Eur J Pharm Sci 40:456–465

    CAS  PubMed  Google Scholar 

  13. Jain JP, Kumar N (2010) Self assembly of amphiphilic (PEG)3-PLA copolymer as polymersomes: preparation, characterization and their evaluation as drug carrier. Biomacromolecules 11:1027–1035

    CAS  PubMed  Google Scholar 

  14. Ayen WY, Chintankumar B, Jain JP, Kumar N (2011) Effect of PEG chain length and hydrophilic weight fraction on polymersomes prepared from branched (PEG)3-PLA co-polymers. Polymer Adv Tech 22

    Google Scholar 

  15. Ayen WY, Garkhal K, Kumar N (2011) Doxorubicin-loaded (PEG)3-PLA nanopolymersomes: effect of solvents and process parameters on formulation development and in vitro study. Mol Pharm 8:466–478

    CAS  PubMed  Google Scholar 

  16. Jain JP, Ayen WY, Kumar N (2011) Self assembling polymers as polymersomes for drug delivery. Curr Pharm Des 17:65–79

    CAS  PubMed  Google Scholar 

  17. Jain JP, Jatana M, Chakrabarti A, Kumar N (2011) Amphotericin-B-loaded polymersomes formulation (PAMBO) based on (PEG)3-PLA copolymers: an in vivo evaluation in a murine model. Mol Pharm 8:204–212

    CAS  PubMed  Google Scholar 

  18. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187

    CAS  PubMed  Google Scholar 

  19. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    CAS  PubMed  Google Scholar 

  20. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    CAS  PubMed  Google Scholar 

  21. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  22. Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6:193–210

    CAS  PubMed  Google Scholar 

  23. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    CAS  PubMed  Google Scholar 

  24. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H (2003) Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumor targeting. Clin Pharmacokinet 42:1089–1095

    CAS  PubMed  Google Scholar 

  25. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    CAS  PubMed  Google Scholar 

  26. Greish K, Nagamitsu A, Fang J, Maeda H (2005) Copoly (styrene-maleic acid)-pirarubicin micelles: high tumor-targeting efficiency with little toxicity1. Bioconjug Chem 16:230–236

    CAS  PubMed  Google Scholar 

  27. Maeda H (1991) SAMNCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 6:181–202

    CAS  Google Scholar 

  28. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T et al (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89:307–314

    CAS  PubMed  Google Scholar 

  29. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    CAS  PubMed  Google Scholar 

  30. Baba A, Catoi C (2007) In comparative oncology: Chapter 3, Tumor cell morphology. The Publishing House of the Romanian Academy, Bucharest

    Google Scholar 

  31. Liekens S, De Clercq E, Neyts J (2001) Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61:253–270

    CAS  PubMed  Google Scholar 

  32. Gupta MK, Qin RY (2003) Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol 9:1144–1155

    CAS  PubMed  Google Scholar 

  33. Konno T, Maeda H, Iwai K, Maki S, Tashiro S, Uchida M et al (2006) Selective targeting of anticancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium. Cancer 54:2367–2374

    Google Scholar 

  34. Iwai K, Maeda H, Konno T (1984) Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res 44:2115–2121

    CAS  PubMed  Google Scholar 

  35. Konno T (1992) Targeting chemotherapy for hepatoma: arterial administration of anticancer drugs dissolved in lipiodol. Eur J Cancer 28:403–409

    CAS  PubMed  Google Scholar 

  36. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    CAS  PubMed  Google Scholar 

  37. Maeda H, Wu J, Okamoto T, Maruo K, Akaike T (1999) Kallikrein kinin in infection and cancer. Immunopharmacology 43:115–128

    CAS  PubMed  Google Scholar 

  38. Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K et al (2001) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35

    Google Scholar 

  39. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319

    CAS  PubMed  Google Scholar 

  40. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    CAS  PubMed  Google Scholar 

  41. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    CAS  PubMed  Google Scholar 

  42. Matsumura Y, Kimura M, Yamamoto T, Maeda H (1988) Involvement of the Kinin-generating cascade in enhanced vascular permeability in tumor tissue. Jpn J Cancer Res 79:1327–1334

    CAS  PubMed  Google Scholar 

  43. Matsumura Y, Maruo K, Kimura M, Yamamoto T, Konno T, Maeda H (1991) Kinin-generating cascade in advanced cancer patients and in vitro study. Jpn J Cancer Res 82:732–741

    CAS  PubMed  Google Scholar 

  44. Akaike T, Horie H, Noguchi Y, Fujii S, Beppu T, Ogawa M et al (1998) Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 77:1598–1604

    Google Scholar 

  45. Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T et al (1999) Induction of haem oxygenase-1 by nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 80:1945

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Maeda H, Noguchi Y, Sato K, Akaike T (1994) Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res 85:331–334

    CAS  PubMed  Google Scholar 

  47. Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H (2001) Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Jpn J Cancer Res 92:439–451

    CAS  PubMed  Google Scholar 

  48. Tanaka S, Akaike T, Wu J, Fang J, Sawa T, Ogawa M et al (2003) Modulation of tumor-selective vascular blood flow and extravasation by the stable prostaglandin I2 analogue beraprost sodium. J Drug Target 11:45–52

    CAS  PubMed  Google Scholar 

  49. Wu J, Akaike T, Maeda H (1998) Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res 58:159–165

    CAS  PubMed  Google Scholar 

  50. Okamoto T, Akaike T, Nagano T, Miyajima S, Suga M, Ando M et al (1997) Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys 342:261–274

    CAS  PubMed  Google Scholar 

  51. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    CAS  PubMed  Google Scholar 

  52. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A et al (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97:99–107

    CAS  PubMed  Google Scholar 

  54. Terman BI, Stoletov KV (2001) VEGF and tumor angiogenesis. Einstein Quart J Biol Med 18:59–66

    CAS  Google Scholar 

  55. Zhang H, Cai Z, Sun Y, Yu F, Chen Y, Sun B (2012) Folate-conjugated b-cyclodextrin from click chemistry strategy and for tumor-targeted drug delivery. J Biomed Mater Res A 2012:2441–2449

    Google Scholar 

  56. Li X, Tian X, Zhang J, Zhao X, Chen X, Jiang Y et al (2011) In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymer-modified liposomes loaded with docetaxel. Int J Nanomedicine 6:1167

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM et al (1999) Targeting folate receptor with folate linked to extremities of poly (ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10:289–298

    CAS  PubMed  Google Scholar 

  58. Zhang Z, Yao J (2012) Preparation of irinotecan-loaded folate-targeted liposome for tumor targeting delivery and its antitumor activity. AAPS PharmSciTech 13:802–810

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun 46:392–394

    Google Scholar 

  60. Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H et al (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6:e24077

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kurosaki T, Higuchi N, Kawakami S, Higuchi Y, Nakamura T, Kitahara T et al (2012) Self-assemble gene delivery system for molecular targeting using nucleic acid aptamer. Gene 491:205–209

    CAS  PubMed  Google Scholar 

  62. Cao Z, Tong R, Mishra A, Xu W, Wong GCL, Cheng J et al (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed Engl 48:6494–6498

    CAS  PubMed  Google Scholar 

  63. Managit C, Kawakami S, Yamashita F, Hashida M (2005) Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes. J Pharm Sci 94:2266–2275

    CAS  PubMed  Google Scholar 

  64. Sonoke S, Ueda T, Fujiwara K, Kuwabara K, Yano J (2011) Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA. Biol Pharm Bull 34:1338–1342

    CAS  PubMed  Google Scholar 

  65. Duan C, Gao J, Zhang D, Jia L, Liu Y, Zheng D et al (2012) Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin. Biomacromolecules 12:4335–4343

    Google Scholar 

  66. Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F, Hashida M (2008) Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release 125:121–130

    CAS  PubMed  Google Scholar 

  67. Pang Z, Gao H, Yu Y, Guo L, Chen J, Pan S et al (2011) Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem 22:1171–1180

    CAS  PubMed  Google Scholar 

  68. Gao H-l, Pang Z-q, Fan L, Hu K-l, Wu B-x, Jiang X-g (2010) Effect of lactoferrin- and transferrin-conjugated polymersomes in brain targeting: in vitro and in vivo evaluations. Acta Pharmacol Sin 31:237–243

    CAS  PubMed  Google Scholar 

  69. Li XM, Ding LY, Xu Y, Wang Y, Ping QN (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123

    CAS  PubMed  Google Scholar 

  70. Zhao H, Wang JC, Sun QS, Luo CL, Zhang Q (2009) RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target 17:10–18

    CAS  PubMed  Google Scholar 

  71. Yang T, Choi MK, Cui FD, Lee SJ, Chung SJ, Shim CK et al (2007) Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res 24:2402–2411

    CAS  PubMed  Google Scholar 

  72. Gupta B, Torchilin VP (2007) Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 56:1215–1223

    CAS  PubMed  Google Scholar 

  73. ElBayoumi TA, Torchilin VP (2009) Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clin Cancer Res 15:1973–1980

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R et al (2012) Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res 18:454–464

    CAS  PubMed  Google Scholar 

  75. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740

    CAS  PubMed  Google Scholar 

  76. Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T et al (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 342:194–200

    CAS  PubMed  Google Scholar 

  77. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443

    CAS  PubMed  Google Scholar 

  78. Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693

    CAS  PubMed  Google Scholar 

  79. Qiang X, Wu T, Fan J, Wang J, Song F, Sun S et al (2012) Preparation and folic acid conjugation of fluorescent polymer nanoparticles for cancer cell targeting. J Mater Chem 22:16078

    CAS  Google Scholar 

  80. Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146

    CAS  PubMed  Google Scholar 

  81. Lee RJ, Wang S, Low PS (1996) Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim Biophys Acta 1312:237–242

    PubMed  Google Scholar 

  82. Ghaghada KB, Saul J, Natarajan JV, Bellamkonda RV, Annapragada AV (2005) Folate targeting of drug carriers: a mathematical model. J Control Release 104:113–128

    CAS  PubMed  Google Scholar 

  83. Yamada A, Taniguchi Y, Kawano K, Honda T, Hattori Y, Maitani Y (2008) Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin Cancer Res 14:8161–8168

    CAS  PubMed  Google Scholar 

  84. Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18:4206

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Zhang H, Ma Y, Sun X-L (2010) Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med Res Rev 30:270–289

    CAS  PubMed  Google Scholar 

  87. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3–44

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lai CH, Lin CY, Wu HT, Chan HS, Chuang YJ, Chen CT et al (2010) Galactose encapsulated multifunctional nanoparticle for HepG2 cell internalization. Adv Funct Mater 20:3948–3958

    CAS  Google Scholar 

  89. Wijagkanalan W, Higuchi Y, Kawakami S, Teshima M, Sasaki H, Hashida M (2008) Enhanced anti-inflammation of inhaled dexamethasone palmitate using mannosylated liposomes in an endotoxin-induced lung inflammation model. Mol Pharmacol 74:1183–1192

    CAS  PubMed  Google Scholar 

  90. Mitra M, Mandal AK, Chatterjee TK, Das N (2005) Targeting of mannosylated liposome incorporated benzyl derivative of Penicillium nigricans derived compound MT81 to reticuloendothelial systems for the treatment of visceral leishmaniasis. J Drug Target 13:285–293

    CAS  PubMed  Google Scholar 

  91. Rathore A, Jain A, Gulbake A, Shilpi S, Khare P, Jain SK (2011) Mannosylated liposomes bearing Amphotericin B for effective management of visceral Leishmaniasis. J Liposome Res 21:333–340

    CAS  PubMed  Google Scholar 

  92. Kim B-S, Hong D-J, Bae J, Lee M (2005) Controlled self-assembly of carbohydrate conjugate rod coil amphiphiles for supramolecular multivalent ligands. J Am Chem Soc 127:16333–16337

    CAS  PubMed  Google Scholar 

  93. Lee JS, Groothuis T, Cusan C, Mink D, Feijen J (2011) Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials 32:9144–9153

    CAS  PubMed  Google Scholar 

  94. Marega R, Karmani L, Flamant L, Nageswaran PG, Valembois V, Masereel B et al (2012) Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. J Mater Chem 22:21305–21312

    CAS  Google Scholar 

  95. Hsieh WJ, Liang CJ, Chieh JJ, Wang SH, Lai IR, Chen JH et al (2012) In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles. Int J Nanomedicine 7:2833–2842

    CAS  PubMed Central  PubMed  Google Scholar 

  96. ElBayoumi TA, Torchilin VP (2008) Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Mol Pharm 6:246–254

    Google Scholar 

  97. Pang Z, Lu W, Gao H, Hu K, Chen J, Zhang C et al (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 128:120–127

    CAS  PubMed  Google Scholar 

  98. Lin JJ, Ghoroghchian PP, Zhang Y, Hammer DA (2006) Adhesion of antibody-functionalized polymersomes. Langmuir 22:3975–3979

    CAS  PubMed  Google Scholar 

  99. Pissuwan D, Valenzuela SM, Miller CM, Cortie MB (2007) A golden bullet? Selective targeting of Toxoplasma gondii Tachyzoites using antibody-functionalized gold nanorods. Nano Lett 7:3808–3812

    CAS  PubMed  Google Scholar 

  100. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    CAS  PubMed  Google Scholar 

  101. Surovtseva EV, Johnston AH, Zhang W, Zhang Y, Kim A, Murakoshi M et al (2012) Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear. Int J Pharm 424:121–127

    CAS  PubMed  Google Scholar 

  102. Demirgoz D, Pangburn TO, Davis KP, Lee S, Bates FS, Kokkoli E (2009) PR_b-targeted delivery of tumor necrosis factor-a by polymersomes for the treatment of prostate cancer. Soft Matter 5:2011–2019

    CAS  Google Scholar 

  103. Pangburn TO, Georgiou K, Bates FS, Kokkoli E (2012) Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. Langmuir 28:12816–12830

    CAS  PubMed  Google Scholar 

  104. Stojanov K, Georgieva JV, Brinkhuis RP, van Hest JC, Rutjes FP, Dierckx RAJO et al (2012) In vivo biodistribution of prion-and gm1-targeted polymersomes following intravenous administration in mice. Mol Pharm 9:1620–1627

    CAS  PubMed  Google Scholar 

  105. Christian NA, Milone MC, Ranka SS, Li G, Frail PR, Davis KP et al (2007) Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug Chem 18:31–40

    CAS  PubMed  Google Scholar 

  106. Bin J, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H et al (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 78:851–855

    Google Scholar 

  107. Zhang X, Koh CG, Yu B, Liu S, Piao L, Marcucci G et al (2009) Transferrin receptor targeted lipopolyplexes for delivery of antisense oligonucleotide G3139 in a murine K562 xenograft model. Pharm Res 26:1516–1524

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Koshkaryev A, Piroyan A, Torchilin VP (2012) Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther 13:50–60

    CAS  PubMed  Google Scholar 

  109. Hambley TW (2009) Is anticancer drug development heading in the right direction? Cancer Res 69:1259–1262

    CAS  PubMed  Google Scholar 

  110. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2–3

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    CAS  PubMed  Google Scholar 

  113. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure: an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    CAS  PubMed  Google Scholar 

  114. Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188:759–768

    CAS  PubMed  Google Scholar 

  115. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    CAS  PubMed  Google Scholar 

  116. DiResta GR, Lee J, Arbit E (1996) Process and device to reduce interstitial fluid pressure in tissue. US 5484,399 A

    Google Scholar 

  117. DiResta GR, Healey JH (2003) Apparatus and method for reducing interstitial fluid pressure and enhancing delivery of a therapeutic agent. US 6547,777 B2

    Google Scholar 

  118. Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83:97–111

    CAS  PubMed  Google Scholar 

  119. Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25:55–71

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6:1041–1051

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Pawar, P.V., Domb, A.J., Kumar, N. (2014). Systemic Targeting Systems-EPR Effect, Ligand Targeting Systems. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_3

Download citation