Skip to main content

Drug Delivery to Wounds, Burns, and Diabetes-Related Ulcers

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The skin’s continuity and integrity can be compromised as a result of trauma arising from physical or thermal damage or an underlying pathological condition resulting in wounds. Wound healing involves three phases: inflammation, proliferation (new tissue formation), and remodeling/contraction. This chapter discussed different wound management dressings and advanced technologies for achieving improved healing for wounds, burns, and diabetes-related ulcers. Several dressings have been used for delivering drugs to acute and chronic wounds. Apart from the dressings, some pharmacological agents that include antibiotic, gene therapy and cytokine, growth factors, and stem cells and other drugs like antioxidants, antihistamines, phenytoin, antisense gel, and traditional drugs have been discussed in the chapter along with the pathogenesis of wounds, burns, and diabetes ulcers.

Keywords

  • Wound Healing
  • Chronic Wound
  • Wound Healing Process
  • Epithelial Stem Cell
  • Promote Wound Healing

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_26
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 26.1
Fig. 26.2
Fig. 26.3
Fig. 26.4

References

  1. Fuchs E (2007) Scratching the surface of skin development. Nature 445:834–842

    CAS  PubMed Central  PubMed  Google Scholar 

  2. MacNeil S (2008) Biomaterials for tissue engineering of skin. Mater Today 11:26–35

    CAS  Google Scholar 

  3. Ehrenreich M, Ruszczak Z (2006) Update on tissue-engineered biological dressings. Tissue Eng 12:2407–2424

    CAS  PubMed  Google Scholar 

  4. Schulz JT, Tompkins RG, Burke JF (2000) Artificial skin. Annu Rev Med 51:231–244

    CAS  PubMed  Google Scholar 

  5. Williams WG, Phillips LG (1996) Pathophysiology of the burn wound. In: Hernndon DN (ed) Total burn care. Harcourt Health Sciences, Philadelphia, PA, pp 63–69

    Google Scholar 

  6. Boyce ST (1996) Cultured skin substitutes: a review. Tissue Eng 2:255–266

    CAS  PubMed  Google Scholar 

  7. Queen D, Orsted H, Sanada H, Sussman G (2004) A dressing history. Int Wound J 1:59–77

    PubMed  Google Scholar 

  8. Falabella A (2006) Debridement and wound bed preparation. Dermatol Ther 19:317–325

    PubMed  Google Scholar 

  9. Boateng J, Matthews K, Stevens H, Eccleston G (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    CAS  PubMed  Google Scholar 

  10. Lipsky BA, Hoey C (2009) Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 49:1541–1549

    PubMed  Google Scholar 

  11. Atiyeh B, Gunn S, Hayek S (2005) State of the art in burn treatment. World J Surg 29:131–148

    PubMed  Google Scholar 

  12. Steenfos H (1994) Growth factors and wound healing. Scand J Plast Reconstr Surg 28:95–105

    CAS  Google Scholar 

  13. Peng L, Fung K, Leung P, Gao J (2011) Genetically manipulated adult stem cells for wound healing. Drug Discov Today 16:957–966

    CAS  PubMed  Google Scholar 

  14. Williams D (1996) Wounds: decontamination and healing. Coord Chem Rev 151:161–174

    CAS  Google Scholar 

  15. Zachariah J, Rao A, Prabha R, Gupta A, Paul M, Lamba S (2012) Post burn pruritus-a review of current treatment options. Burns 38:621–629

    PubMed  Google Scholar 

  16. Meena K, Mohan A, Sharath B, Somayaji S, Bairy K (2011) Effect of topical phenytoin on burn wound healing in rats Indian. J Exp Biol 49:56–59

    CAS  Google Scholar 

  17. Becker D, Thrasivoulou C, Phillips A (2012) Connexins in wound healing; perspectives in diabetic patients. Biochim Biophys Acta 1818:2068–2075

    CAS  PubMed  Google Scholar 

  18. Kasarla R, Elumalai A, Eswaraiah MC, Ravi P, Naresh V (2012) An annual review on wound-healing medicinal plants. J Nat Prod Plant Resour 2:182–185

    Google Scholar 

  19. Loot M, Kenter S, Au F (2002) Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol 81:153–160

    PubMed  Google Scholar 

  20. Stojadinovic O, Brem H, Vouthounis C (2005) Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol 167:59–69

    CAS  PubMed  Google Scholar 

  21. Waikel R, Kawachi Y, Waikel P, Wang X, Roop D (2001) Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 28:165–168

    CAS  PubMed  Google Scholar 

  22. Kim B, Kim H, Park S (2003) Fibroblasts from chronic wounds show altered TGF-beta–signaling and decreased TGF-beta type II receptor expression. J Cell Physiol 195:331–336

    CAS  PubMed  Google Scholar 

  23. Goova M, Kislinger T, Qu W, Lu Y, Bucciarelli L (2001) Blockade of receptor for advanced glycation end products restores effective wound healing in diabetic mice. Am J Pathol 159:513–515

    CAS  PubMed  Google Scholar 

  24. Bennett S, GriffIth G, Schor A, Leese G, Schor S (2003) Growth factors in the treatment of diabetic foot ulcers. Br J Surg 90:133–146

    CAS  PubMed  Google Scholar 

  25. Mast B, Schultz G (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 4:411–420

    CAS  PubMed  Google Scholar 

  26. Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweek S, Lehnert H (2002) Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 45:1011–1018

    CAS  PubMed  Google Scholar 

  27. Brigstock D (2003) The CCN family: a new stimulus package. J Endocrinol 178:169–175

    CAS  PubMed  Google Scholar 

  28. Wetzler C, Kampfer H, Stallmeyer B, Pfeilschifte J, Frank S (2000) Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 115:245–253

    CAS  PubMed  Google Scholar 

  29. Portero O, Pamplona R, Bellmunt M, Ruiz M, Prat J, Salvayre R (2002) Advanced glycation end product precursors impair epidermal growth factor receptor signalling. Diabetes 51:1535–1542

    Google Scholar 

  30. Alistair Y (2011) The physiology of wound healing. Surgery 29:475–479

    Google Scholar 

  31. Treece K, MacFarlane R, Pound N, Game F, Jeffcoate W (2004) Validation of a system of foot ulcer classification in diabetes mellitus. Diabet Med 21:987–991

    CAS  PubMed  Google Scholar 

  32. Lawrence S, Wraight P, Campbell D, Colman P (2004) Assessment and management of inpatients with acute diabetes related foot complications. Intern Med J 34:229–233

    CAS  PubMed  Google Scholar 

  33. Margolis K, Taylor L, Hoffstad O, Berline J (2003) Diabetic neuropathic foot ulcer: the association of wound size, wound duration and would grade. Diabetes Care 25:1835–1839

    Google Scholar 

  34. Purner S, Babu M (2000) Collagen based dressings—a review. Burns 26:54–62

    Google Scholar 

  35. Rijswijk L (2006) Ingredient-based wound dressing classification: a paradigm shift that is passé and in need of replacement. J Wound Care 15:11–14

    PubMed  Google Scholar 

  36. Millington J, Norris T (2000) Effective treatment strategies for diabetic foot wounds. J Fam Pract 49:40–48

    Google Scholar 

  37. Heenan A (1998) Hydrocolloids: frequently asked questions. World Wide Wounds 1:1–17

    Google Scholar 

  38. Koksal C, Bozkurt A (2003) Combination of hydrocolloid dressing and medical compression stocking versus Unna’s boot for the treatment of venous leg ulcers. Swiss Med Wkly 133:364–368

    PubMed  Google Scholar 

  39. Cadier M, Clarke J (1996) Dermasorb versus Jelonet in patients with burns skin graft donor sites. J Burn Care Rehabil 17:246–251

    CAS  PubMed  Google Scholar 

  40. Thomas S (2000) Alginate dressings in surgery and wound management—Part 1. J Wound Care 9:56–60

    CAS  PubMed  Google Scholar 

  41. Kuo C, Ma P (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521

    CAS  PubMed  Google Scholar 

  42. Wang L, Shelton R, Cooper P, Lawson M, Triffitt J (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481

    CAS  PubMed  Google Scholar 

  43. Morgan D (1999) Wound management products in the drug tariff. Pharm J 263:820–825

    Google Scholar 

  44. Heenan A (1998) Dressings on the drug tariff. Worldwide Wounds, 4th edn. Surgical Material Testing Laboratory, Wales

    Google Scholar 

  45. O’Meara S, Callum N, Majid M, Sheldon T (2000) Systematic reviews of wound care management (3) antimicrobial agents for chronic wounds (4) diabetic foot ulceration. Health Technol Assess 4:1–237

    Google Scholar 

  46. Nelson E, O’Meara S, Craig D, Iglesias C, Golder S, Dalton J et al (2006) A series of systematic reviews to inform a decision analysis for sampling treating infected diabetic foot ulcers. Health Technol Assess 10:1–221

    Google Scholar 

  47. Aoyagi S, Onishi H, Machida Y (2007) Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int J Pharm 330:138–145

    CAS  PubMed  Google Scholar 

  48. Kumar T, Bai M, Krishnan L (2004) A freeze-dried fibrin disc as a biodegradable drug release matrix. Biologicals 32:49–55

    CAS  PubMed  Google Scholar 

  49. Sawada Y, Tadashi O, Masazumi K, Kazunobu S, Koichi O, Sasaki J (1994) An evaluation of a new lactic acid polymer drug delivery system: a preliminary report. Br J Plast Surg 47:158–161

    CAS  PubMed  Google Scholar 

  50. Sawada Y, Ara M, Yotsuyanagi T, Sone K (1990) Treatment of dermal depth burn wounds with an antimicrobial agent-releasing silicone gel sheet. Burns 16:347–352

    CAS  PubMed  Google Scholar 

  51. Doillon C, Silver F (1986) Collagen-based wound dressing: effect of hyaluronic acid and fibronectin on wound healing. Biomaterials 7:3–8

    CAS  PubMed  Google Scholar 

  52. Chu H, Xiong H, Zhou X, Han F, Wu Z, Zhang P et al (2006) Aminoglycoside ototoxicity in three murine strains and effects on NKCC1 of stria vascularis. Chin Med J 119:980–985

    CAS  PubMed  Google Scholar 

  53. Patrick B, Rivey M, Allington D (2006) Acute renal failure associated with vancomycin and tobramycin-laden cement in total hip arthroplasty. Ann Pharmacother 40:2037–2042

    CAS  PubMed  Google Scholar 

  54. Fraser JF, Bodman J, Sturgess R, Faoagali J, Kimble RM (2004) An in vitro study of the anti-microbial efficacy of a 1 % silver sulphadiazine and 0.2 % chlorhexidine digluconate cream, 1 % silver sulphadiazine cream and a silver coated dressing. Burns 30:35–41

    PubMed  Google Scholar 

  55. Komarcevic A (2000) The modern approach to wound treatment. Med Pregl 53:363–368

    CAS  PubMed  Google Scholar 

  56. Dijke P, Iwata K (1989) Growth factors for wound healing. Biotechnology 7:793–798

    Google Scholar 

  57. Greenhalgh D (1996) The role of growth factors in wound healing. J Trauma Inj Infect Crit Care 41:159–167

    CAS  Google Scholar 

  58. Puolakkainen P, Twardzik D, Ranchalis J, Pankey S, Reed M, Gombotz W (1995) The enhancement in wound healing by transforming growth factor-b1 (TGF-b1) depends on the topical delivery system. J Surg Res 58:321–329

    CAS  PubMed  Google Scholar 

  59. Defail A, Edington H, Matthews S, Lee W, Marra K (2006) Controlled release of bioactive doxorubicin from microspheres embedded within gelatin scaffolds. J Biomed Mater Res 79:954–962

    Google Scholar 

  60. Koempel J, Gibson S, O’Grady K, Toriumi D (1998) The effect of platelet-derived growth factor on tracheal wound healing. Int J Pediatr Otorhinolaryngol 146:1–8

    Google Scholar 

  61. Maeda M, Kadota K, Kajihara M, Sano A, Fujioka K (2001) Sustained release of human growth hormone (hGH) from collagen film and evaluation of effect on wound healing in mice. J Control Release 77:261–272

    CAS  PubMed  Google Scholar 

  62. Gu F, Amsden B, Neufeld R (2004) Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 96:463–472

    CAS  PubMed  Google Scholar 

  63. Grzybowski J, Oldak E, Antos-Bielska M, Janiak M, Pojda Z (1999) New cytokine dressings. I. Kinetics of the in vitro rhG-CSF, rhGM-CSF, and rhEGF release from the dressings. Int J Pharm 184:173–178

    CAS  PubMed  Google Scholar 

  64. Park S, Kim J, Suh H (2004) Evaluation of antibiotic loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25:3689–3698

    CAS  PubMed  Google Scholar 

  65. Wallace E (1994) Feeding the wound: nutrition and wound healing. Br J Nurs 3:662–667

    CAS  PubMed  Google Scholar 

  66. Flanigan K (1997) Nutritional aspects of wound healing. Adv Wound Care 10:48–52

    CAS  PubMed  Google Scholar 

  67. Ehrlich H, Tarver H, Hun T (1973) Effects of vitamin A and glucocorticoids upon inflammation and collagen synthesis. Ann Surg 177:222–227

    CAS  PubMed  Google Scholar 

  68. Porto R, Lucio D, Souza T, Pereira S, Fernandes G (2002) Effects of a vitamin pool (vitamins A, E, and C) on the tissue necrosis process: experimental study on rats. Aesthetic Plast Surg 26:197–202

    Google Scholar 

  69. Yang H, Chai J, Guo ZR (2001) Effect of improved topical agents on healing time of deep second-degree burn wound. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 15:3162–3164

    Google Scholar 

  70. Hansson C, Hoborn J, Moller A, Swanbeck G (1995) The microbial flora in venous leg ulcers without clinical signs of infection: repeated culture using a validated standardised microbiological technique. Acta Derm Venereol 75:24–30

    CAS  PubMed  Google Scholar 

  71. Mertz PM, Ovington LG (1993) Wound healing microbiology. Dermatol Clin 11:739–747

    CAS  PubMed  Google Scholar 

  72. Yates CC, Whaley D, Babu R, Zhang J, Krishna P, Beckman E et al (2007) The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models. Biomaterials 28:3977–3986

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kumar MS, Kirubanandan S, Sripriya R, Sehgal PK (2008) Triphala promotes healing of infected full-thickness dermal wound. J Surg Res 144:94–101

    PubMed  Google Scholar 

  74. Shanmugasundaram N, Uma TS, Ramyaa Lakshmi TS, Babu M (2009) Efficiency of controlled topical delivery of silver sulfadiazine in infected burn wound. J Biomed Mater Res A 89:472–482

    CAS  PubMed  Google Scholar 

  75. Teo EY, Ong SY, Chong MS, Zhang Z, Lu J, Moochhala S et al (2011) Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. Biomaterials 32:279–287

    CAS  PubMed  Google Scholar 

  76. Cutting K, White R (2005) Criteria for identifying wound infection—revisited. Ostomy Wound Manage 51:28–34

    PubMed  Google Scholar 

  77. Drosou A, Falabella A, Kirsner R (2003) Antiseptics on wounds: an area of controversy. Wounds 15:2–11

    Google Scholar 

  78. Neely A, Gardner J, Durkee P (2009) Are topical antimicrobials effective against bacteria that are highly resistant to systemic antibiotics? J Burn Care Res 30:19–29

    PubMed  Google Scholar 

  79. Meng X (2002) Keratinocyte gene therapy: cytokine gene expression in local keratinocytes and in circulation by introducing cytokine genes into skin. Exp Dermatol 11:456–461

    CAS  PubMed  Google Scholar 

  80. Steinstraesser L (2001) Feasibility of biolistic gene therapy in burns. Shock 15:272–277

    CAS  PubMed  Google Scholar 

  81. Yao F, Eriksson E (2000) Gene therapy in wound repair and regeneration. Wound Repair Regen 8:443–451

    CAS  PubMed  Google Scholar 

  82. Eming S, Morgan J, Berger A (1997) Gene therapy for tissue repair: approaches and prospects. Br J Plast Surg 50:491–500

    CAS  PubMed  Google Scholar 

  83. Jeschke M, Richter G, Hofstadter F (2002) Non-viral liposomal keratinocyte growth factor (KGF) cDNA gene transfer improves dermal and epidermal regeneration through stimulation of epithelial and mesenchymal factors. Gene Ther 9:1065–1074

    CAS  PubMed  Google Scholar 

  84. Galeano M, Deodato B, Altavilla D (2003) Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury. Crit Care Med 31:1017–1025

    CAS  PubMed  Google Scholar 

  85. Braddock M, Campbell C, Zuder D (1999) Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 38:808–817

    CAS  PubMed  Google Scholar 

  86. Eming SA, Krieg T, Davidson JM (2007) Gene therapy and wound healing. Clin Dermatol 25:79–92

    PubMed Central  PubMed  Google Scholar 

  87. Jeschke M, Barrow R, Hawkins H (1996) IGF-I gene transfer in thermally injured rats. Gene Ther 6:1015–1020

    Google Scholar 

  88. Henry S, McAllister D, Allen M (1998) Microfabricated micro-needles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925

    CAS  PubMed  Google Scholar 

  89. Ciernik I, Krayenbuhl B, Carbone D (1996) Puncture-mediated gene transfer to the skin. Hum Gene Ther 7:893–899

    CAS  PubMed  Google Scholar 

  90. Jia C, Chen B, Wang D (1999) Effects of PCMV4-hTGF beta 1 as nucleic acid vaccine on II* burn wound healing and postburn scarring in rats. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 15:170–172

    CAS  PubMed  Google Scholar 

  91. McLennan S, McGill M, Twigg S, Yue D (2007) Improving wound-healing outcomes in diabetic foot ulcers. Expert Rev Endocrinol Metabol 2:205–213

    Google Scholar 

  92. Chen F, Zhang M, Wu Z (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31:6279–6308

    CAS  PubMed  Google Scholar 

  93. Sporn M, Roberts A (1993) A major advance in the use of growth factors to enhance wound healing. J Clin Invest 92:2565–2566

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Beck L, Deguzman L, Lee W (1991) TGFβ accelerates wound healing: reversal of steroid-impaired healing in rats and rabbits. Growth Factors 5:295–304

    CAS  PubMed  Google Scholar 

  95. Lepisto J, Laato M, Niinikoski J (1992) Effects of homodimeric isoforms of platelet-derived growth factor (PDGF AA and PDGF BB) on wound healing in rats. J Surg Res 53:596–601

    CAS  PubMed  Google Scholar 

  96. Steed D (1995) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. J Vasc Surg 21:71–81

    CAS  PubMed  Google Scholar 

  97. Ross R, Raines E, Bowen-Pope DF (1986) The biology of platelet derived growth factor. Cell 46:155–169

    CAS  PubMed  Google Scholar 

  98. Lepisto J, Peltonen J, Vaha-Kreula M (1996) Selective modulation of collagen gene expression by different isoforms of platelet-derived growth factor in experimental wound healing. Cell Tissue Res 286:449–455

    CAS  PubMed  Google Scholar 

  99. Cribbs R, Luquette M, Besner E (1998) Acceleration of partial-thickness burn wound healing with topical application of heparin-binding EGF-like growth factor (HB-EGF). J Burn Care Rehabil 19:95–101

    CAS  PubMed  Google Scholar 

  100. Hardwicke J, Schmaljohann D, Boyce D, Thomas D (2008) Epidermal growth factor therapy and wound healing-past, present and future perspectives. Surgeon 6:172–177

    CAS  PubMed  Google Scholar 

  101. Ko C, Dixit V, Shaw W, Gitnick G (1997) Extensive in vivo angiogenesis from the controlled release of endothelial cell growth factor: implications for cell transplantation and wound healing. J Control Release 44:209–214

    CAS  Google Scholar 

  102. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    CAS  PubMed  Google Scholar 

  103. Klingbeil C, Cesar LB, Fiddes JC (1991) Clinical and experimental approaches to dermal and epidermal repair: normal and chronic wounds. In: Barbul A, Caldwell M, Eaglstein W, Hunt T, Marshall D, Pines E, Skover G (eds) Basic fibroblast growth factor accelerates tissue repair in models of impaired wound healing. Wiley, New York, NY, pp 443–458

    Google Scholar 

  104. Pierce G, Mustoe T, Lingelbach J, Masakowski V, Gramates P, Deuel T (1989) Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet derived growth factor. Proc Natl Acad Sci U S A 86(7):2229–2237

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Pierce G, Mustoe T, Lingelbach J, Masakowski V, Griffin G, Senior R et al (1989) Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol 109:429–440

    CAS  PubMed  Google Scholar 

  106. Greenhalgh D, Sprugel K, Murray M, Ross R (1990) PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 136:1235–1246

    CAS  PubMed  Google Scholar 

  107. Mustoe T, Pierce G, Morishima C, Deuel T (1991) Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87:694–703

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Wu Y, Chen L, Scott P, Tredget E (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    CAS  PubMed  Google Scholar 

  109. Pittenger M, McKay A, Beck S, Jaiswal R, Douglas R, Mosca J et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  110. Javazon E, Keswani S, Badillo A, Crombleholme T, Zoltick P, Radu A et al (2007) Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen 15:350–359

    PubMed  Google Scholar 

  111. Anne M, Nicole S (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316:2213–2219

    Google Scholar 

  112. Kamolz L, Kolbus A, Wick N, Mazal P, Eisenbock B, Burjak S (2006) Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns 32:16–19

    PubMed  Google Scholar 

  113. Branski L, Gauglitz G, Herndon D, Jeschke M (2009) A review of gene and stem cell therapy in cutaneous wound healing. Burns 35:171–180

    PubMed Central  PubMed  Google Scholar 

  114. Kim W, Park B, Sung J, Yang J, Park S, Kwak S (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24

    CAS  PubMed  Google Scholar 

  115. Plikusa M, Gaya D, Treffeisena E, Wanga A, Supapannacharta R, Cotsarelisa G (2012) Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol 23:946–953

    Google Scholar 

  116. Roh C, Lyle S (2006) Cutaneous stem cells and wound healing. Pediatr Res 59:100–103

    Google Scholar 

  117. Matthias S, Sabine W (2008) Oxidative stress in normal and impaired wound repair. Pharmacol Res 58:165–171

    Google Scholar 

  118. Al-Jawad F, Sahib A, Al-Kaisy A (2008) Role of antioxidants in the treatment of burn lesions. Ann Burns Fire Disasters 186–191

    Google Scholar 

  119. Gomathi K, Gopinath D, Ahmed MR, Jayakumar R (2003) Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials 24:2767–2772

    CAS  PubMed  Google Scholar 

  120. Panchatcharam M, Miriyala S, Gayathri V, Suguna L (2006) Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem 290:87–96

    CAS  PubMed  Google Scholar 

  121. Brooks J, Malic C, Judkins K (2008) Scratching the surface—managing the itch associated with burns: a review of current knowledge. Burns 34(2008):2751–2760

    Google Scholar 

  122. Albsoul A, Younes N, Badran D (2006) Topical phenytoin ointment increases autograft acceptance in rats. Saudi Med J 27:962–971

    Google Scholar 

  123. Pendse A, Sharma A, Sodani A, Hada S (1993) Topical phenytoin in wound healing. Int J Dermatol 32:214–223

    CAS  PubMed  Google Scholar 

  124. Brandner J, Houdek P, Husing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122:1310–1320

    CAS  PubMed  Google Scholar 

  125. Wang C, Green C, Duft B, Becker D (2007) Targeting connexin43 expression accelerates the rate of skin and diabetic wound repair. J Biotechnol 131:S64–S64

    Google Scholar 

  126. Patel P, Vasquez S, Granick M, Rhee S (2008) Topical antimicrobials in pediatric burn wound management. J Craniofac Surg 19:913–922

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Jain, S., Domb, A.J., Kumar, N. (2014). Drug Delivery to Wounds, Burns, and Diabetes-Related Ulcers. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_26

Download citation