Skip to main content

Focal Drug Delivery to the Nail

  • 2626 Accesses

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Disease of the nail unit is fairly common and may be entirely localised to the nail or reflect deeper systemic conditions. The disorders are sometimes, but not always, benign and can sometimes cause physical pain as well as social embarrassment and depression when long term and recalcitrant to treatment. The two most common nail diseases are fungal infections and psoriasis, which are largely treated using oral antifungals and steroid injections into the nail unit, respectively. Due to the adverse effects and drug interactions of the oral antifungals and the pain of injections, topical formulations have also been used for many years, with varying (mainly limited) success rates. Interest in formulating more effective topical nail medicines has however been steadily increasing in recent years and a range of new approaches are being investigated. In this Chapter, the nail unit, its diseases and their focal therapy is discussed. Focal drug application to the nail is performed entirely for local action to treat diseases of the nail unit. The latter, although serving numerous functions, is generally taken for granted until affected by disease. Even then, the disease is frequently ignored and remains untreated (often for years), due to various reasons, such as, perceived unimportance of a ‘cosmetic problem’ and the lack of a rapid cure. While some nail diseases are fairly benign, for example, nail yellowing in smokers, others can be extremely painful and serious, for example, infections and malignant tumours. Thus, nail diseases have a significant impact on the quality of life of sufferers, for example, pain upon wearing footwear with severely diseased toenails, while disfigured fingernails can inhibit social/work interactions especially if the hands are involved in the said interactions. Successful treatment of nail diseases is therefore of critical importance.

Keywords

  • Nail Plate
  • Focal Therapy
  • Fluocinolone Acetonide
  • Nail Psoriasis
  • Nail Matrix

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_25
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 25.1
Fig. 25.2
Fig. 25.3
Fig. 25.4
Fig. 25.5
Fig. 25.6

References

  1. Dawber RPR, de Berker DAR, Baran R (2001) Science of the nail apparatus. In: Baran R, Dawber RPR, De Berker DAR, Haneke E, Tosti A (eds) Baran and Dawber’s diseases of the nails and their management. Blackwell, Oxford, pp 1–47

    Google Scholar 

  2. Fleckman P (2005) Structure and function of the nail unit. In: Scher R, Daniel CR III (eds) Nails diagnosis therapy surgery. Elsevier Saunders, Shanghai, pp 13–25

    Google Scholar 

  3. de Berker DAR, Andre J, Baran R (2007) Nail biology and nail science. Int J Cosmet Sci 29(4):241–275

    PubMed  Google Scholar 

  4. de Berker D, Forslind B (2004) The structure and properties of nails and periungual tissues. In: Forslind B, Linberg M, Norlén L (eds) Skin, hair, and nails, structure and function. Marcel Dekker, New York, NY, pp 409–464

    Google Scholar 

  5. Zaias N (1990) The nail in health and disease, 2nd edn. Appleton & Lange, Norwalk, CT

    Google Scholar 

  6. Barron JN (1970) The structure and function of the skin of the hand. Hand 2(2):93–96

    CAS  PubMed  Google Scholar 

  7. Dawber RPR, Baran R (1984) Structure, embryology, comparative anatomy and physiology of the nail. In: Baran R, Dawber RPR (eds) Diseases of the nails and their management. Blackwell, Oxford

    Google Scholar 

  8. Chapman RE (1986) Hair, wool, quill, nail, claw, hoof and horn. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the Integument, Vol 2, Vertebrates. Springer: New York, NY

    Google Scholar 

  9. Gonzalez-Serva A (1997) Structure and function. In: Scher RK, Daniel CR (eds) Nails: therapy, diagnosis, surgery. WB Saunders, Philadelphia, PA, pp 12–31

    Google Scholar 

  10. Williams TI, Rose R, Chisholm S (2007) What is the function of nail biting: an analog assessment study. Behav Res Ther 45(5):989–995

    PubMed  Google Scholar 

  11. Murdan S (2012) The nail: anatomy, physiology, diseases, and treatment. In: Murthy SN, Maibach H (eds) Topical nail products and ungual drug delivery. CRC, Boca Raton, FL, pp 1–36

    Google Scholar 

  12. Roome L (1998) Mehndi: the timeless art of henna painting. St Martin’s, New York, NY

    Google Scholar 

  13. Marzec E, Olszewski J (2009) Molecular interactions in human nail plate analysed by dielectric spectroscopy. Colloids Surf B Biointerfaces 69(1):91–94

    CAS  PubMed  Google Scholar 

  14. Priya MDL, Geetha A (2011) A biochemical study on the level of proteins and their percentage of nitration in the hair and nail of autistic children. Clin Chim Acta 412(11–12):1036–1042

    Google Scholar 

  15. Morini L et al (2012) Determination of ethyl glucuronide in nails by liquid chromatography tandem mass spectrometry as a potential new biomarker for chronic alcohol abuse and binge drinking behavior. Anal Bioanal Chem 402(5):1865–1870

    CAS  PubMed  Google Scholar 

  16. Bengtsson CF et al (2012) DNA from keratinous tissue. Part I: hair and nail. Ann Anat 194(1):17–25

    CAS  PubMed  Google Scholar 

  17. Williams JS, Katzenberg MA (2012) Seasonal fluctuations in diet and death during the late horizon: a stable isotopic analysis of hair and nail from the central coast of Peru. J Archaeol Sci 39(1):41–57

    CAS  Google Scholar 

  18. Oyoo-Okoth E et al (2012) Element profiles in hair and nails of children reflect the uptake from food and the environment. Environ Toxicol Chem / SETAC 31(7):1461–1469

    CAS  Google Scholar 

  19. Murdan S (2002) Drug delivery to the nail following topical application. Int J Pharm 236(1–2):1–26

    CAS  PubMed  Google Scholar 

  20. Hamilton JB, Terada H, Mestler GE (1955) Studies of growth throughout the lifespan in Japanese: growth and size of nails and their relationship to age, sex, heredity, and other factors. J Gerontol 10(4):401–415

    CAS  PubMed  Google Scholar 

  21. Murdan S (2010) Transverse fingernail curvature: a quantitative evaluation, and an exploration into the influence of gender, age, handedness, height and hand size. Presentation at UK Pharm Sci 2010, September 2010

    Google Scholar 

  22. Forslind B, Thyresson N (1975) Structure of normal nail-scanning electron-microscope study. Archiv Fur Dermatologische Forschung 251(3):199–204

    CAS  PubMed  Google Scholar 

  23. Lewis BL (1954) Microscopic studies of fetal and mature nail and surrounding soft tissue. AMA Arch Derm Syphilol 70(6):733–747

    CAS  PubMed  Google Scholar 

  24. Jarrett A, Spearman RI (1966) Histochemistry of human nail. Arch Dermatol 94(5):652–657

    CAS  PubMed  Google Scholar 

  25. Sowa MG et al (1995) Infrared spectroscopic investigation of in-vivo and ex-vivo human nails. Vib Spectros 10(1):49–56

    CAS  Google Scholar 

  26. Rice RH et al (2010) Proteomic analysis of human nail plate. J Proteome Res 9(12):6752–6758

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gniadecka M et al (1998) Structure of water, proteins, and lipids in intact human skin, hair, and nail. J Investig Dermatol 110(4):393–398

    CAS  PubMed  Google Scholar 

  28. Stern DK et al (2007) Water content and other aspects of brittle versus normal fingernails. J Am Acad Dermatol 57(1):31–36

    PubMed  Google Scholar 

  29. Egawa M, Ozaki Y, Takahashi M (2006) In vivo measurement of water content of the fingernail and its seasonal change. Skin Res Technol 12(2):126–132

    PubMed  Google Scholar 

  30. Helmdach M et al (2000) Age and sex variation in lipid composition of human fingernail plates. Skin Pharmacol Appl Skin Physiol 13(2):111–119

    CAS  PubMed  Google Scholar 

  31. He K (2011) Trace elements in nails as biomarkers in clinical research. Eur J Clin Invest 41(1):98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Vellar OD (1970) Composition of human nail substance. Am J Clin Nutr 23(10):1272–1274

    CAS  PubMed  Google Scholar 

  33. Sirota L et al (1988) X-ray - microanalysis of the fingernails in term and preterm infants. Pediatr Dermatol 5(3):184–186

    CAS  PubMed  Google Scholar 

  34. Wilhelm M et al (2005) Comparison of arsenic levels fingernails with urinary as species as biomarkers of arsenic exposure in residents living close to a coal-burning power plant in Prievidza District, Slovakia. J Expo Anal Environ Epidemiol 15(1):89–98

    CAS  PubMed  Google Scholar 

  35. Nardoto GB et al (2006) Geographical patterns of human diet derived from stable-isotope analysis of fingernails. Am J Phys Anthropol 131(1):137–146

    PubMed  Google Scholar 

  36. Lewis BL, Montgomery H (1955) The senile nail. J Investig Dermatol 24(1):11–18

    CAS  PubMed  Google Scholar 

  37. Tosti A, Piraccini BM (2007) Biology of nails and nail disorders. In: Wolff K et al (eds) Fitzpatrick’s dermatology in general medicine. McGraw Hill, New York, NY, pp 778–794

    Google Scholar 

  38. Michel C et al (1997) Nail abnormalities in rheumatoid arthritis. Br J Dermatol 137(6):958–962

    CAS  PubMed  Google Scholar 

  39. Murdan S et al (2012) In vivo measurement of the surface energy of human fingernail plates. Int J Cosmet Sci 34(3):257–262

    CAS  PubMed  Google Scholar 

  40. Murdan S, Milcovich G, Goriparthi GS (2011) An assessment of the human nail plate pH. Skin Pharmacol Physiol 24(4):175–181

    CAS  PubMed  Google Scholar 

  41. Achten G, Wanet-Rouard J (1978) Onychomycoses in the laboratory. Mykosen Suppl 1:125–127

    CAS  PubMed  Google Scholar 

  42. Pardo-Castello V (1960) Diseases of the nail, 3rd edn. Charles C Thomas, Springfield, IL

    Google Scholar 

  43. Thomas J et al (2010) Toenail onychomycosis: an important global disease burden. J Clin Pharm Ther 35(5):497–519

    CAS  PubMed  Google Scholar 

  44. Roberts DT (1999) Onychomycosis: current treatment and future challenges. Br J Dermatol 141:1–4

    PubMed  Google Scholar 

  45. Chabasse D, Baran R, De Chauvin MF (2000) Onychomycosis I: epidemiology and etiology. J Mycol Med 10(4):177–190

    Google Scholar 

  46. Pierard G (2001) Onychomycosis and other superficial fungal infections of the foot in the elderly: a Pan-European survey. Dermatology 202(3):220–224

    CAS  PubMed  Google Scholar 

  47. Hay RJ, Baran R, Haneke E (2001) Fungal (onychomycosis) and other infections involving the nail apparatus. In: Baran R, Dawber RPR, De Berker DAR, Haneke E, Tosti A (eds) Baran and Dawber’s diseases of the nails and their management. Blackwell, Oxford, pp 129–171

    Google Scholar 

  48. Caputo R et al (2001) Prevalence of superficial fungal infections among sports-active individuals: results from the Achilles survey, a review of the literature. J Eur Acad Dermatol Venereol 15:312–316

    CAS  PubMed  Google Scholar 

  49. Daniel CR (1991) The diagnosis of nail fungal infection. Arch Dermatol 127(10):1566–1567

    PubMed  Google Scholar 

  50. Cohen PR, Scher RK (1994) Topical and surgical treatment of onychomycosis. J Am Acad Dermatol 31(3):S74–S77

    CAS  PubMed  Google Scholar 

  51. Scher RK (1996) Onychomycosis: a significant medical disorder. J Am Acad Dermatol 35(3):S2–S5

    CAS  PubMed  Google Scholar 

  52. Gupta AK, Shear NH (1997) Onychomycosis – going for cure. Can Fam Physician 43:299–305

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Midgley G, Moore MK, Cook JC (1994) Mycology of nail disorders. J Am Acad Dermatol 31:S68–S74

    CAS  PubMed  Google Scholar 

  54. Sigurgeirsson B et al (2002) Long-term effectiveness of treatment with terbinafine vs itraconazole in onychomycosis: a 5-year blinded prospective follow-up study. Arch Dermatol 138(3):353–357

    CAS  PubMed  Google Scholar 

  55. Baran R, Hay RJ, Garduno JI (2008) Review of antifungal therapy, part II: treatment rationale, including specific patient populations. J Dermatolog Treat 19(3):168–175

    CAS  PubMed  Google Scholar 

  56. Pierard GE, Pierard-Franchimont C, Arrese JE (2000) The boosted antifungal topical treatment (BATT) for onychomycosis. Med Mycol 38(5):391–392

    CAS  PubMed  Google Scholar 

  57. BNF (ed) (2008) British national formulary, 56 edn. BMJ Group & RPS, London

    Google Scholar 

  58. Baran R et al (2000) A randomized trial of amorolfine 5% solution nail lacquer combined with oral terbinafine compared with terbinafine alone in the treatment of dermatophytic toenail onychomycoses affecting the matrix region. Br J Dermatol 142(6):1177–1183

    CAS  PubMed  Google Scholar 

  59. Halmy K (2005) Experience with nail lacquers containing amorolfine 5% and ciclopirox 8% in patients with onychomycosis. J Am Acad Dermatol 52(3):P126

    Google Scholar 

  60. Pierard G, Pierard-Franchimont C, Arrese JE (2000) The boosted oral antifungal treatment for onychomycosis beyond the regular itraconazole pulse dosing regimen. Dermatology 200(2):185–187

    CAS  PubMed  Google Scholar 

  61. Donnelly RF et al (2005) Bioadhesive patch-based delivery of 5-aminolevulinic acid to the nail for photodynamic therapy of onychomycosis. J Control Release 103(2):381–392

    CAS  PubMed  Google Scholar 

  62. Nasir A et al (2011) Clinical evaluation of safety and efficacy of a New topical treatment for onychomycosis. J Drugs Dermatol 10(10):1186–1191

    PubMed  Google Scholar 

  63. Carney C et al (2011) How is laser effective in treatment of onychomycosis? J Am Acad Dermatol 64(2):AB103

    Google Scholar 

  64. Schofield OMV, Hunter JAA (1999) Diseases of the skin. In: Haslett C, Chilvers ER, Hunter JAA, Boon NA (eds) Davidson’s principles and practice of medicine. Churchill Livingstone, London, p 900

    Google Scholar 

  65. Samman P (1978) The nails in disease, 3rd edn. Heinemann, London

    Google Scholar 

  66. Del Rosso JQ, Basuk PJ, Scher RK, Ricci AR (1997) Dermatologic diseases of the nail unit. In: Scher RK, Daniel CR (eds) Nails: therapy, diagnosis, surgery. WB Saunders, Philadelphia, PA, pp 172–200

    Google Scholar 

  67. Langley RG et al (2012) Recommendations for the treatment of nail psoriasis in patients with moderate to severe psoriasis: a dermatology expert group consensus. J Eur Acad Dermatol Venereol 26(3):373–381

    CAS  PubMed  Google Scholar 

  68. Jiaravuthisan MM et al (2007) Psoriasis of the nail: anatomy, pathology, clinical presentation, and a review of the literature on therapy. J Am Acad Dermatol 57(1):1–27

    PubMed  Google Scholar 

  69. Edwards F, de Berker D (2009) Nail psoriasis: clinical presentation and best practice recommendations. Drugs 69(17):2351–2361

    CAS  PubMed  Google Scholar 

  70. Shivakumar HN et al (2012) Topical nail formulations. In: Murthy SN, Maibach H (eds) Topical nail products and ungual drug delivery. CRC, Boca Raton, FL, pp 61–86

    Google Scholar 

  71. Gupchup GV, Zatz JL (1999) Structural characteristics and permeability properties of the human nail: a review. J Cosmet Sci 50(6):363–385

    CAS  Google Scholar 

  72. Sun Y, Liu J-C, Wang JCT (1999) Nail penetration. Focus on topical delivery of antifungal drugs for onychomycosis treatment. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption. Drugs cosmetics mechanisms methodology. Marcel Dekker, New York, pp 759–778

    Google Scholar 

  73. Elkeeb R et al (2010) Transungual drug delivery: current status. Int J Pharm 384(1–2):1–8

    CAS  PubMed  Google Scholar 

  74. Murdan S (2008) Enhancing the nail permeability of topically applied drugs. Expert Opin Drug Deliv 5(11):1267–1282

    CAS  PubMed  Google Scholar 

  75. Hochberg S (1979) Kirk-Othmer encyclopedia of chemical technology, vol 6, 3rd edn. Wiley, New York, NY

    Google Scholar 

  76. Patil A, Sandewicz R (1999) Nail lacquer technology. Society of Cosmetic Chemists: Revlon Research Centre, New Jersey, NJ

    Google Scholar 

  77. Pittrof F et al (1992) Loceryl(R) nail lacquer - realization of a new galenical approach to onychomycosis therapy. Clin Exp Dermatol 17:26–28

    PubMed  Google Scholar 

  78. Mitsui T (1997) Make up cosmetics, in new cosmetic science. Elsevier, Amsterdam, pp 370–405

    Google Scholar 

  79. Sidou F, Soto P (2004) A randomized comparison of nail surface remanence of three nail lacquers, containing amorolfine 5%, ciclopirox 8% or tioconazole 28%, in healthy volunteers. Int J Tissue React 26(1–2):17–24

    CAS  PubMed  Google Scholar 

  80. Bohn M, Kraemer KT (2000) Dermatopharmacology of ciclopirox nail lacquer topical solution 8% in the treatment of onychomycosis. J Am Acad Dermatol 43(4):S57–S69

    CAS  PubMed  Google Scholar 

  81. Marty JP (1995) Amorolfine nail lacquer: a novel formulation. J Eur Acad Dermatol Venereol 4(Suppl 1):S17–S21

    Google Scholar 

  82. Murdan S, Hinsu D, Guimier M (2008) A few aspects of transonychial water loss (TOWL): inter-individual, and intra-individual inter-finger, inter-hand and inter-day variabilities, and the influence of nail plate hydration, filing and varnish. Eur J Pharm Biopharm 70(2):684–689

    CAS  PubMed  Google Scholar 

  83. Spruit D (1972) Effect of nail polish on the hydration of the fingernail. Amer Cosmet Perf 87:57–58

    Google Scholar 

  84. Gunt HB, Kasting GB (2007) Effect of hydration on the permeation of ketoconazole through human nail plate in vitro. Eur J Pharm Sci 32(4–5):254–260

    CAS  PubMed  Google Scholar 

  85. Polak A (1993) Kinetics of amorolfine in human nails. Mycoses 36(3–4):101–103

    CAS  PubMed  Google Scholar 

  86. Reinel D (1992) Topical treatment of onychomycosis with amorolfine 5 percent nail lacquer - comparative efficacy and tolerability of once and twice weekly use. Dermatology 184:21–24

    PubMed  Google Scholar 

  87. Chan TC et al (2005) EcoNail (TM) (5% econazole plus 18% SEPA (R)) nail lacquer in patients with severe onychomycosis: safety, local tolerability, and systemic exposure. J Investig Dermatol 125(1):926

    Google Scholar 

  88. Hui XY et al (2003) Enhanced econazole penetration into human nail by 2-n-nonyl-1,3-dioxolane. J Pharm Sci 92(1):142–148

    CAS  PubMed  Google Scholar 

  89. Hossain M et al (2005) Efficacy of terbinafine hydrochloride nail lacquer formulations in a guinea pig model of Trichophyton mentagrophytes dermatophytosis. J Am Acad Dermatol 52(3):P8

    Google Scholar 

  90. Gupta A et al (2005) Evaluation of terbinafine HCL nail lacquer in a phase 2 study in onychomycosis patients: clinical efficacy assessment by computerized planimetry. J Am Acad Dermatol 52(3):P126

    Google Scholar 

  91. Long L, Pfister W, Ghannoum M (2006) In vitro evaluation of terbinafine HCl nail lacquer in a bovine hoof penetration bioassay. J Am Acad Dermatol 54(3):AB147

    Google Scholar 

  92. Ghannoum MA, Long L, Pfister WR (2009) Determination of the efficacy of terbinafine hydrochloride nail solution in the topical treatment of dermatophytosis in a guinea pig model. Mycoses 52(1):35–43

    PubMed  Google Scholar 

  93. Wohlrab W, Wellner K (1994) Nail lacquer for the treatment of onychomycosis. Roehm Pharma GmbH, Weiterstadt DE http://www.freepatentsonline.com/5346692.html, last accessed 21 Jun 2010

  94. Shivakumar HN et al (2010) Bilayered nail lacquer of terbinafine hydrochloride for treatment of onychomycosis. J Pharm Sci 99(10):4267–4276

    CAS  PubMed  Google Scholar 

  95. Makvana R, Brown MB, McAuley WJ (2010) Development of a novel phase separating nail lacquer for the treatment on onychomycosis. J Pharm Pharm 62(6):802–803

    Google Scholar 

  96. Baran R, Tosti A (1999) Topical treatment of nail psoriasis with a new corticoid-containing nail lacquer formulation. J Dermatol Treat 10(3):201–204

    CAS  Google Scholar 

  97. Regana MS et al (2005) Treatment of nail psoriasis with 8% clobetasol nail lacquer: positive experience in 10 patients. J Eur Acad Dermatol Venereol 19(5):573–577

    Google Scholar 

  98. Cantoresi F et al (2009) Improvement of psoriatic onychodystrophy by a water-soluble nail lacquer based on hydroxypropyl-chitosan. J Am Acad Dermatol 60(3):AB163

    Google Scholar 

  99. Kruger N et al (2006) Effect of urea nail lacquer on nail quality. Clinical evaluation and biophysical measurements. Hautarzt 57(12):1089–1093

    CAS  PubMed  Google Scholar 

  100. Baran R, Tosti A (2002) Chemical avulsion with urea nail lacquer. J Dermatolog Treat 13(4):161–164

    CAS  PubMed  Google Scholar 

  101. Monti D et al (2010) Hydrosoluble medicated nail lacquers: in vitro drug permeation and corresponding antimycotic activity. Br J Dermatol 162(2):311–317

    CAS  PubMed  Google Scholar 

  102. Hui X et al (2007) In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci 96:2622–2631

    CAS  PubMed  Google Scholar 

  103. Franz TJ (1992) Absorption of amorolfine through human nail. Dermatology 184:18–20

    PubMed  Google Scholar 

  104. Nalamothu V, Schwartz J (2004) Influence of formulation variables on the adhesion characteristics of clotrimazole nail lacquers. Available from http://www.aapsj.org/abstracts/AM_2004/AAPS2004-000732.PDF Cited 9 Jun 2010

  105. Susilo R et al (2006) Nail penetration of sertaconazole with a sertaconazole-containing nail patch formulation. Am J Clin Dermatol 7(4):259–262

    PubMed  Google Scholar 

  106. Myoung Y, Choi HK (2003) Permeation of ciclopirox across porcine hoof membrane: effect of pressure sensitive adhesives and vehicles. Eur J Pharm Sci 20(3):319–325

    CAS  PubMed  Google Scholar 

  107. Repka MA, Prodduturi S, Stodghill SP (2003) Production and characterization of hot-melt extruded films containing clotrimazole. Drug Dev Ind Pharm 29(7):757–765

    CAS  PubMed  Google Scholar 

  108. Repka MA, Mididoddi PK, Stodghill SP (2004) Influence of human nail etching for the assessment of topical onychomycosis therapies. Int J Pharm 282(1–2):95–106

    CAS  PubMed  Google Scholar 

  109. Mididoddi PK, Prodduturi S, Repka MA (2006) Influence of tartaric acid on the bioadhesion and mechanical properties of hot-melt extruded hydroxypropyl cellulose films for the human nail. Drug Dev Ind Pharm 32(9):1059–1066

    CAS  PubMed  Google Scholar 

  110. Mididoddi PK, Repka MA (2007) Characterization of hot-melt extruded drug delivery systems for onychomycosis. Eur J Pharm Biopharm 66(1):95–105

    CAS  PubMed  Google Scholar 

  111. Manda P et al (2012) Iontophoresis across the proximal nail fold to target drugs to the nail matrix. J Pharm Sci 101(7):2392–2397

    CAS  PubMed  Google Scholar 

  112. Baraldi A et al (2012) A study on the structural integrity of healthy and diseased nails: the retention of disulphide bonds in perspectives in percutaneous penetration. La Grande Motte, France

    Google Scholar 

  113. Murdan S et al (2011) Does the strength of adhesion between an ungual topical film and the nail plate influence its in vivo residence time? UKPharmSci, Nottingham

    Google Scholar 

  114. Tatsumi Y et al (2002) Therapeutic efficacy of topically applied KP-103 against experimental tinea unguium in guinea pigs in comparison with amorolfine and terbinafine. Antimicrob Agents Chemother 46(12):3797–3801

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudaxshina Murdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Murdan, S. (2014). Focal Drug Delivery to the Nail. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_25

Download citation