Skip to main content

Antibiotics Delivery for Treating Bone Infections

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Osteomyelitis is an infection of bone and bone marrow. It is attributed to several factors: antibiotic short half-life, poor blood circulation at the infected area, and systemic antibiotic toxicity usage of the required high systemic dose. All evocating osteomyelitis presents an additional challenge, because the infecting bacteria form a biofilm mode of growth, which, on devascularized surfaces, shields them from antibiotics. Widespread research is currently being conducted on local drug delivery systems to treat osteomyelitis. By utilizing newer forms of sustained-release antibiotic delivery systems, it will be possible to deliver such antibiotics at constant rates over a prolonged period of time and eliminate the need for multiple dosing.

Keywords

  • Calcium Phosphate Cement
  • Composite Scaffold
  • Chronic Osteomyelitis
  • Bone Infection
  • Sebacic Acid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_21
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 21.1

References

  1. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(Suppl 2):S105–S112

    PubMed  CrossRef  Google Scholar 

  2. Cierny G III, Mader JT, Penninck JJ (2003) A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res (414): 7–24

    Google Scholar 

  3. Lew DP, Waldvogel FA (1997) Osteomyelitis. New Engl J Med 336(14):999–1007

    CAS  PubMed  CrossRef  Google Scholar 

  4. Gold RH, Hawkins RA, Katz RD (1991) Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR Am J Roentgenol 157(2):365–370

    CAS  PubMed  CrossRef  Google Scholar 

  5. Santiago Restrepo C, Gimenez CR, McCarthy K (2003) Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin North Am 29(1):89–109

    CAS  PubMed  CrossRef  Google Scholar 

  6. Tumeh SS, Aliabadi P, Weissman BN, McNeil BJ (1987) Disease activity in osteomyelitis: role of radiography. Radiology 165(3):781–784

    CAS  PubMed  Google Scholar 

  7. Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ (2005) The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am 87(11):2464–2471

    CAS  PubMed  CrossRef  Google Scholar 

  8. Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KD (2007) Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 34(5):704–714

    PubMed  CrossRef  Google Scholar 

  9. Palestro CJ, Torres MA (1997) Radionuclide imaging in orthopedic infections. Semin Nucl Med 27(4):334–345

    CAS  PubMed  CrossRef  Google Scholar 

  10. Mackowiak PA, Jones SR, Smith JW (1978) Diagnostic value of sinus-tract cultures in chronic osteomyelitis. JAMA 239(26):2772–2775

    CAS  PubMed  CrossRef  Google Scholar 

  11. Kaplan SL (2005) Osteomyelitis in children. Infect Dis Clin North Am 19(4):787–797, vii

    PubMed  CrossRef  Google Scholar 

  12. Prasarn ML, Ahn J, Achor T, Matuszewski P, Lorich DG, Helfet DL (2009) Management of infected femoral nonunions with a single-staged protocol utilizing internal fixation. Injury 40(11):1220–1225

    PubMed  CrossRef  Google Scholar 

  13. Key JA (2009) The classic: sulfonamides in the treatment of chronic osteomyelitis. 1944. Clin Orthop Relat Res 467(7):1662–1669

    PubMed  CrossRef  Google Scholar 

  14. Mouzopoulos G, Kanakaris NK, Kontakis G, Obakponovwe O, Townsend R, Giannoudis PV (2011) Management of bone infections in adults: the surgeon’s and microbiologist’s perspectives. Injury 42(Suppl 5):S18–S23

    PubMed  CrossRef  Google Scholar 

  15. Sheehy SH, Atkins BA, Bejon P, Byren I, Wyllie D, Athanasou NA, Berendt AR, McNally MA (2010) The microbiology of chronic osteomyelitis: prevalence of resistance to common empirical anti-microbial regimens. J Infect 60(5):338–343

    CAS  PubMed  CrossRef  Google Scholar 

  16. Mader JT, Cripps MW, Calhoun JH (1999) Adult posttraumatic osteomyelitis of the tibia. Clin Orthop Relat Res (360): 14–21

    Google Scholar 

  17. Lew DP, Waldvogel FA (1995) Quinolones and osteomyelitis: state-of-the-art. Drugs 49(Suppl 2):100–111

    CAS  PubMed  CrossRef  Google Scholar 

  18. Isefuku S, Joyner CJ, Simpson AH (2001) Toxic effect of rifampicin on human osteoblast-like cells. J Orthop Res 19(5):950–954

    CAS  PubMed  CrossRef  Google Scholar 

  19. Holtom PD, Pavkovic SA, Bravos PD, Patzakis MJ, Shepherd LE, Frenkel B (2000) Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res 18(5):721–727

    CAS  PubMed  CrossRef  Google Scholar 

  20. Galanakis N, Giamarellou H, Moussas T, Dounis E (1997) Chronic osteomyelitis caused by multi-resistant Gram-negative bacteria: evaluation of treatment with newer quinolones after prolonged follow-up. J Antimicrob Chemother 39(2):241–246

    CAS  PubMed  CrossRef  Google Scholar 

  21. Allababidi S, Shah JC (1998) Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J Pharm Sci 87(6):738–744

    CAS  PubMed  CrossRef  Google Scholar 

  22. Wang G, Liu SJ, Ueng SW, Chan EC (2004) The release of cefazolin and gentamicin from biodegradable PLA/PGA beads. Int J Pharm 273(1–2):203–212

    CAS  PubMed  CrossRef  Google Scholar 

  23. Gursel I, Korkusuz F, Turesin F, Alaeddinoglu NG, Hasirci V (2001) In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 22(1):73–80

    CAS  PubMed  CrossRef  Google Scholar 

  24. Kanellakopoulou K, Giamarellos-Bourboulis EJ (2000) Carrier systems for the local delivery of antibiotics in bone infections. Drugs 59(6):1223–1232

    CAS  PubMed  CrossRef  Google Scholar 

  25. Schmidmaier G, Wildemann B, Stemberger A, Haas NP, Raschke M (2001) Biodegradable poly(D, L-lactide) coating of implants for continuous release of growth factors. J Biomed Mater Res 58(4):449–455

    CAS  PubMed  CrossRef  Google Scholar 

  26. Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP (1993) Biodegradation and brain tissue reaction to poly(D, L-lactide-co-glycolide) microspheres. Biomaterials 14(6):470–478

    CAS  PubMed  CrossRef  Google Scholar 

  27. Bostman O, Hirvensalo E, Makinen J, Rokkanen P (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br 72(4):592–596

    CAS  PubMed  Google Scholar 

  28. Price JS, Tencer AF, Arm DM, Bohach GA (1996) Controlled release of antibiotics from coated orthopedic implants. J Biomed Mater Res 30(3):281–286

    CAS  PubMed  CrossRef  Google Scholar 

  29. Ramchandani M, Robinson D (1998) In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. J Control Release 54(2):167–175

    CAS  PubMed  CrossRef  Google Scholar 

  30. Baro M, Sanchez E, Delgado A, Perera A, Evora C (2002) In vitro-in vivo characterization of gentamicin bone implants. J Control Release 83(3):353–364

    CAS  PubMed  CrossRef  Google Scholar 

  31. Benoit MA, Mousset B, Delloye C, Bouillet R, Gillard J (1997) Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections. Int Orthop 21(6):403–408

    CAS  PubMed  CrossRef  Google Scholar 

  32. Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J (2006) The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27(9):1741–1748

    CAS  PubMed  CrossRef  Google Scholar 

  33. Neut D, Kluin OS, Crielaard BJ, van der Mei HC, Busscher HJ, Grijpma DW (2009) A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis. Acta Orthop 80(5):514–519

    PubMed  CrossRef  Google Scholar 

  34. Van Leeuwen AC, Van Kooten TG, Grijpma DW, Bos RR (2012) In vivo behaviour of a biodegradable poly(trimethylene carbonate) barrier membrane: a histological study in rats. J Mater Sci Mater Med 23(8):1951–1959

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  35. Liao H, Walboomers XF, Habraken WJEM, Zhang Z, Li Y, Grijpma DW, Mikos AG, Wolke JGC, Jansen JA (2011) Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta Biomater 7(4):1752–1759

    CAS  PubMed  CrossRef  Google Scholar 

  36. Kluin OS, van der Mei HC, Busscher HJ, Neut D (2009) A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials 30(27):4738–4742

    CAS  PubMed  CrossRef  Google Scholar 

  37. Le Ray AM, Chiffoleau S, Iooss P, Grimandi G, Gouyette A, Daculsi G, Merle C (2003) Vancomycin encapsulation in biodegradable poly(epsilon-caprolactone) microparticles for bone implantation. Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility. Biomaterials 24(3):443–449

    PubMed  CrossRef  Google Scholar 

  38. Kim HW, Knowles JC, Kim HE (2004) Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25(7–8):1279–1287

    CAS  PubMed  CrossRef  Google Scholar 

  39. Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 90(3):906–919

    PubMed  CrossRef  Google Scholar 

  40. Amsden BG, Tse MY, Turner ND, Knight DK, Pang SC (2006) In vivo degradation behavior of photo-cross-linked star-poly(epsilon-caprolactone-co-D, L-lactide) elastomers. Biomacromolecules 7(1):365–372

    CAS  PubMed  CrossRef  Google Scholar 

  41. Tabata Y, Yamada K, Miyamoto S, Nagata I, Kikuchi H, Aoyama I, Tamura M, Ikada Y (1998) Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels. Biomaterials 19(7–9):807–815

    CAS  PubMed  CrossRef  Google Scholar 

  42. Castro C, Evora C, Baro M, Soriano I, Sanchez E (2005) Two-month ciprofloxacin implants for multibacterial bone infections. Eur J Pharm Biopharm 60(3):401–406

    CAS  PubMed  CrossRef  Google Scholar 

  43. Puga AM, Rey-Rico A, Magarinos B, Alvarez-Lorenzo C, Concheiro A (2012) Hot melt poly-epsilon-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomater 8(4):1507–1518

    CAS  PubMed  CrossRef  Google Scholar 

  44. Jain JP, Modi S, Domb AJ, Kumar N (2005) Role of polyanhydrides as localized drug carriers. J Control Release 103:541–563

    CAS  PubMed  CrossRef  Google Scholar 

  45. Jain JP, Chitkara D, Kumar N (2008) Polyanhydrides as localized drug delivery carrier: an update. Expert Opin Drug Deliv 5(8):889–907

    CAS  PubMed  CrossRef  Google Scholar 

  46. Saito N, Takaoka K (2003) New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials 24(13):2287–2293

    CAS  PubMed  CrossRef  Google Scholar 

  47. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16, discussion 16

    CAS  PubMed  Google Scholar 

  48. Li LC, Deng J, Stephens D (2002) Polyanhydride implant for antibiotic delivery–from the bench to the clinic. Adv Drug Deliv Rev 54(7):963–986

    PubMed  CrossRef  Google Scholar 

  49. Laurencin CT, Gerhart T, Witschger P, Satcher R, Domb A, Rosenberg AE, Hanff P, Edsberg L, Hayes W, Langer R (1993) Bioerodible polyanhydrides for antibiotic drug delivery: in vivo osteomyelitis treatment in a rat model system. J Orthop Res 11(2):256–262

    CAS  PubMed  CrossRef  Google Scholar 

  50. Brin YS, Nyska A, Domb AJ, Golenser J, Mizrahi B, Nyska M (2009) Biocompatibility of a polymeric implant for the treatment of osteomyelitis. J Biomater Sci Polym Ed 20(7–8):1081–1090

    CAS  PubMed  CrossRef  Google Scholar 

  51. Brin YS, Golenser J, Mizrahi B, Maoz G, Domb AJ, Peddada S, Tuvia S, Nyska A, Nyska M (2008) Treatment of osteomyelitis in rats by injection of degradable polymer releasing gentamicin. J Control Release 131(2):121–127

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  52. Krasko MY, Golenser J, Nyska A, Nyska M, Brin YS, Domb AJ (2007) Gentamicin extended release from an injectable polymeric implant. J Control Release 117(1):90–96

    CAS  PubMed  CrossRef  Google Scholar 

  53. Shikanov A, Vaisman B, Krasko MY, Nyska A, Domb AJ (2004) Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity. J Biomed Mater Res A 69(1):47–54

    PubMed  CrossRef  Google Scholar 

  54. Du J, Jasti B, Vasavada RC (1997) Controlled release of tobramycin sulfate from poly(ortho esters) implantable discs for the treatment of osteomyelitis. J Control Release 43(2–3):223–233

    CrossRef  Google Scholar 

  55. Knaepler H (2012) Local application of gentamicin-containing collagen implant in the prophylaxis and treatment of surgical site infection in orthopaedic surgery. Int J Surg 10(Suppl 1):S15–S20

    PubMed  CrossRef  Google Scholar 

  56. Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55(12):1613–1629

    CAS  PubMed  CrossRef  Google Scholar 

  57. Riegels-Nielsen P, Espersen F, Holmich LR, Frimodt-Moller N (1995) Collagen with gentamicin for prophylaxis of postoperative infection. Staphylococcus aureus osteomyelitis studied in rabbits. Acta Orthop Scand 66(1):69–72

    CAS  PubMed  CrossRef  Google Scholar 

  58. Zhou J, Fang T, Wang Y, Dong J (2012) The controlled release of vancomycin in gelatin/beta-TCP composite scaffolds. J Biomed Mater Res A 100(9):2295–2301

    PubMed  Google Scholar 

  59. Di Silvio L, Bonfield W (1999) Biodegradable drug delivery system for the treatment of bone infection and repair. J Mater Sci Mater Med 10(10/11):653–658

    PubMed  CrossRef  Google Scholar 

  60. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14

    CAS  PubMed  CrossRef  Google Scholar 

  61. Yenice I, Calis S, Kas H, Ozalp M, Ekizoglu M, Hincal A (2002) Biodegradable implantable teicoplanin beads for the treatment of bone infections. Int J Pharm 242(1–2):271–275

    CAS  PubMed  CrossRef  Google Scholar 

  62. Yenice I, Calis S, Atilla B, Kas HS, Ozalp M, Ekizoglu M, Bilgili H, Hincal AA (2003) In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects. J Microencapsul 20(6):705–717

    CAS  PubMed  CrossRef  Google Scholar 

  63. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    CAS  PubMed  CrossRef  Google Scholar 

  64. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    CAS  PubMed  CrossRef  Google Scholar 

  65. Cevher E, Orhan Z, Mulazimoglu L, Sensoy D, Alper M, Yildiz A, Ozsoy Y (2006) Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Int J Pharm 317(2):127–135

    CAS  PubMed  CrossRef  Google Scholar 

  66. Turesin F, Gursel I, Hasirci V (2001) Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed 12(2):195–207

    CAS  PubMed  CrossRef  Google Scholar 

  67. Yates CC, Whaley D, Babu R, Zhang J, Krishna P, Beckman E, Pasculle AW, Wells A (2007) The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models. Biomaterials 28(27):3977–3986

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  68. Elsner JJ, Berdicevsky I, Zilberman M (2011) In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics. Acta Biomater 7(1):325–336

    CAS  PubMed  CrossRef  Google Scholar 

  69. Kimakhe S, Bohic S, Larrose C, Reynaud A, Pilet P, Giumelli B, Heymann D, Daculsi G (1999) Biological activities of sustained polymyxin B release from calcium phosphate biomaterial prepared by dynamic compaction: an in vitro study. J Biomed Mater Res 47(1):18–27

    CAS  PubMed  CrossRef  Google Scholar 

  70. Peltier LF, Jones RH (2004) Treatment of unicameral bone cysts by curettage and packing with plaster-of-Paris pellets. 1978. Clin Orthop Relat Res (422): 145–147

    Google Scholar 

  71. Calhoun JH, Manring MM, Shirtliff M (2009) Osteomyelitis of the long bones. Semin Plast Surg 23(2):59–72

    PubMed Central  PubMed  CrossRef  Google Scholar 

  72. Scharer BM, Sanicola SM (2009) The in vitro elution characteristics of vancomycin from calcium phosphate-calcium sulfate beads. J Foot Ankle Surg 48(5):540–542

    PubMed  CrossRef  Google Scholar 

  73. Beardmore AA, Brooks DE, Wenke JC, Thomas DB (2005) Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J Bone Joint Surg Am 87(1):107–112

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham J. Domb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Khan, W., Challa, V.G.S., Pawar, R.P., Nyska, M., Brin, Y.S., Domb, A.J. (2014). Antibiotics Delivery for Treating Bone Infections. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_21

Download citation