Skip to main content

Segmental-Dependent Drug Absorption and Delivery: The Stomach

  • 2617 Accesses

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The gastrointestinal tract (GIT) is a long and complex organ, with significantly variable characteristics throughout. It is broadly divided to several segments: the stomach; the small intestine which is subdivided to duodenum, jejunum, and ileum; and the colon. Each segment has its own unique environment. Conditions in each segment are dependent on a multitude of factors. The focus of this chapter is gastroretentive dosage form (GRDF). This term encompasses several technologies with one common feature: they are designed to resist the normal tendency of the stomach to clear its content, resulting in a targeted and controlled release of the active moiety to the upper GI tract. A special emphasis is given for the rationale for GRDF, different GRDF technologies, and their unique application. In conclusion, segment-specific targeting technologies are a highly important research field; a thorough understanding of the determinants of gastrointestinal environment, considering the whole of the human intestine, is crucial for successful targeting of drugs to specific gastrointestinal regions and exploitation of the variable intestinal conditions for better drug delivery and therapeutic effect.

Keywords

  • Drug Release
  • Dosage Form
  • Sodium Alginate
  • Ethyl Cellulose
  • Hollow Microsphere

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9434-8_15
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9434-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 15.1

References

  1. Dahan A, Amidon GL (2009) Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm 6(1):19–28

    CAS  PubMed  CrossRef  Google Scholar 

  2. Dahan A, Lennernäs H, Amidon GL (2012) The fraction dose absorbed, in humans, and high jejunal human permeability relationship. Mol Pharm 9(6):1847–1851

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  3. Dahan A, West BT, Amidon GL (2009) Segmental-dependent membrane permeability along the intestine following oral drug administration: evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat. Eur J Pharm Sci 36(2–3):320–329

    CAS  PubMed  CrossRef  Google Scholar 

  4. Dahan A, Amidon GL, Zimmermann EM (2010) Drug targeting strategies for the treatment of inflammatory bowel disease: a mechanistic update. Expert Rev Clin Immunol 6(4):543–550

    CAS  PubMed  CrossRef  Google Scholar 

  5. Streubel A, Siepmann J, Bodmeier R (2006) Drug delivery to the upper small intestine window using gastroretentive technologies. Curr Opin Pharmacol 6(5):501–508

    CAS  PubMed  CrossRef  Google Scholar 

  6. Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16(5):351–380

    CAS  PubMed  CrossRef  Google Scholar 

  7. Washington N, Washington C, Wilson CG (eds) (2003) Physiological pharmaceutics barriers to drug absorption. Taylor & Francis e-Library, London

    Google Scholar 

  8. Lahner E, Annibale B, Delle Fave G (2009) Systematic review: Helicobacter pylori infection and impaired drug absorption. Aliment Pharmacol Ther 29(4):379–386

    CAS  PubMed  CrossRef  Google Scholar 

  9. Ogawa R, Echizen H (2011) Clinically significant drug interactions with antacids: an update. Drugs 71(14):1839–1864

    CAS  PubMed  CrossRef  Google Scholar 

  10. Berthet S, Charpiat B, Mabrut JY (2010) Erythromycin as a prokinetic agent: risk factors. J Visc Surg 147(2):e13–e18

    CAS  PubMed  CrossRef  Google Scholar 

  11. Kagan L, Hoffman A (2008) Systems for region selective drug delivery in the gastrointestinal tract: biopharmaceutical considerations. Expert Opin Drug Deliv 5(6):681–692

    CAS  PubMed  CrossRef  Google Scholar 

  12. Englund G et al (2006) Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur J Pharm Sci 29(3–4):269–277

    CAS  PubMed  CrossRef  Google Scholar 

  13. Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21(1):25–51

    CAS  PubMed  CrossRef  Google Scholar 

  14. Dahan A, Sabit H, Amidon GL (2009) Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of P-gp and MRP2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos 37(10):2028–2036

    CAS  PubMed  CrossRef  Google Scholar 

  15. Bardonnet PL et al (2006) Gastroretentive dosage forms: overview and special case of Helicobacter pylori. J Control Release 111(1–2):1–18

    CAS  PubMed  CrossRef  Google Scholar 

  16. Kagan L, Hoffman A (2008) Selection of drug candidates for gastroretentive dosage forms: pharmacokinetics following continuous intragastric mode of administration in a rat model. Eur J Pharm Biopharm 69(1):238–246

    CAS  PubMed  CrossRef  Google Scholar 

  17. Chauhan B et al (2005) Preparation and evaluation of floating risedronate sodium-Gelucire 43/01 formulations. Drug Dev Ind Pharm 31(9):851–860

    CAS  PubMed  CrossRef  Google Scholar 

  18. Li S et al (2001) Statistical optimization of gastric floating system for oral controlled delivery of calcium. AAPS PharmSciTech 2(1):E1

    CAS  PubMed  CrossRef  Google Scholar 

  19. Nur AO, Zhang JS (2000) Captopril floating and/or bioadhesive tablets: design and release kinetics. Drug Dev Ind Pharm 26(9):965–969

    CAS  PubMed  CrossRef  Google Scholar 

  20. Chavanpatil M et al (2005) Development of sustained release gastroretentive drug delivery system for ofloxacin: in vitro and in vivo evaluation. Int J Pharm 304(1–2):178–184

    CAS  PubMed  CrossRef  Google Scholar 

  21. Wei Z, Yu Z, Bi D (2001) Design and evaluation of a two-layer floating tablet for gastric retention using cisapride as a model drug. Drug Dev Ind Pharm 27(5):469–474

    CAS  PubMed  CrossRef  Google Scholar 

  22. Hu L et al (2011) Floating matrix dosage form for dextromethorphan hydrobromide based on gas forming technique: in vitro and in vivo evaluation in healthy volunteers. Eur J Pharm Sci 42(1–2):99–105

    CAS  PubMed  CrossRef  Google Scholar 

  23. Gambhire MN et al (2007) Development and in vitro evaluation of an oral floating matrix tablet formulation of diltiazem hydrochloride. AAPS PharmSciTech 8(3):E73

    PubMed  CrossRef  Google Scholar 

  24. Patel VF, Patel NM (2007) Statistical evaluation of influence of viscosity and content of polymer on dipyridamole release from floating matrix tablets: a technical note. AAPS PharmSciTech 8(3):E69

    PubMed  Google Scholar 

  25. Chowdary KP, Rao YS (2003) Design and in vitro and in vivo evaluation of mucoadhesive microcapsules of glipizide for oral controlled release: a technical note. AAPS PharmSciTech 4(3):E39

    CAS  PubMed  CrossRef  Google Scholar 

  26. El-Kamel AH et al (2001) Preparation and evaluation of ketoprofen floating oral delivery system. Int J Pharm 220(1–2):13–21

    CAS  PubMed  CrossRef  Google Scholar 

  27. Stepensky D et al (2001) Preclinical evaluation of pharmacokinetic-pharmacodynamic rationale for oral CR metformin formulation. J Control Release 71(1):107–115

    CAS  PubMed  CrossRef  Google Scholar 

  28. Strubing S, Metz H, Mader K (2008) Characterization of poly(vinyl acetate) based floating matrix tablets. J Control Release 126(2):149–155

    PubMed  CrossRef  Google Scholar 

  29. Dave BS, Amin AF, Patel MM (2004) Gastroretentive drug delivery system of ranitidine hydrochloride: formulation and in vitro evaluation. AAPS PharmSciTech 5(2):e34

    PubMed  CrossRef  Google Scholar 

  30. Hejazi R, Amiji M (2003) Stomach-specific anti-H. pylori therapy. II. Gastric residence studies of tetracycline-loaded chitosan microspheres in gerbils. Pharm Dev Technol 8(3):253–262

    CAS  PubMed  CrossRef  Google Scholar 

  31. Sawicki W (2002) Pharmacokinetics of verapamil and norverapamil from controlled release floating pellets in humans. Eur J Pharm Biopharm 53(1):29–35

    CAS  PubMed  CrossRef  Google Scholar 

  32. Bagul US et al (2011) Stomach specific drug delivery systems: a review. Int J Pharm Res Dev 4(4):147–150

    Google Scholar 

  33. Deshpande AA et al (1997) Development of a novel controlled-release system for gastric retention. Pharm Res 14(6):815–819

    CAS  PubMed  CrossRef  Google Scholar 

  34. Makwana A et al (2012) Advancements in controlled release gastroretentive drug delivery systems: a review. J Drug Deliv Ther 2(3):12–21

    CAS  Google Scholar 

  35. Jaimini M, Rana AC, Tanwar YS (2007) Formulation and evaluation of famotidine floating tablets. Curr Drug Deliv 4(1):51–55

    CAS  PubMed  CrossRef  Google Scholar 

  36. Mazer N et al (1988) Intragastric behavior and absorption kinetics of a normal and “floating” modified-release capsule of isradipine under fasted and fed conditions. J Pharm Sci 77(8):647–657

    CAS  PubMed  CrossRef  Google Scholar 

  37. Saito N et al (2003) Plural transformation-processes from spiral to coccoid Helicobacter pylori and its viability. J Infect 46(1):49–55

    CAS  PubMed  CrossRef  Google Scholar 

  38. Singh BN, Kim KH (2000) Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J Control Release 63(3):235–259

    CAS  PubMed  CrossRef  Google Scholar 

  39. Reddy LH, Murthy RS (2002) Floating dosage systems in drug delivery. Crit Rev Ther Drug Carrier Syst 19(6):553–585

    CAS  PubMed  CrossRef  Google Scholar 

  40. Hwang SJ, Park H, Park K (1998) Gastric retentive drug-delivery systems. Crit Rev Ther Drug Carrier Syst 15(3):243–284

    PubMed  Google Scholar 

  41. Ali J et al (2007) Formulation and development of hydrodynamically balanced system for metformin: in vitro and in vivo evaluation. Eur J Pharm Biopharm 67(1):196–201

    CAS  PubMed  CrossRef  Google Scholar 

  42. Hamdani J et al (2006) In vitro and in vivo evaluation of floating riboflavin pellets developed using the melt pelletization process. Int J Pharm 323(1–2):86–92

    CAS  PubMed  CrossRef  Google Scholar 

  43. Ritschel WA (1991) Targeting in the gastrointestinal tract: new approaches. Methods Find Exp Clin Pharmacol 13(5):313–336

    CAS  PubMed  Google Scholar 

  44. Erdeve O et al (2011) Efficacy and safety of sodium alginate for GERD in preterm infants. Aliment Pharmacol Ther 33(8):981–982, author reply 982–3

    CAS  PubMed  CrossRef  Google Scholar 

  45. Kwiatek MA et al (2011) An alginate-antacid formulation (Gaviscon Double Action Liquid) can eliminate or displace the postprandial ‘acid pocket’ in symptomatic GERD patients. Aliment Pharmacol Ther 34(1):59–66

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  46. Strugala V et al (2009) The role of an alginate suspension on pepsin and bile acids - key aggressors in the gastric refluxate. Does this have implications for the treatment of gastro-oesophageal reflux disease? J Pharm Pharmacol 61(8):1021–1028

    CAS  PubMed  CrossRef  Google Scholar 

  47. Sato Y et al (2004) Pharmacoscintigraphic evaluation of riboflavin-containing microballoons for a floating controlled drug delivery system in healthy humans. J Control Release 98(1):75–85

    CAS  PubMed  CrossRef  Google Scholar 

  48. Streubel A, Siepmann J, Bodmeier R (2002) Floating microparticles based on low density foam powder. Int J Pharm 241(2):279–292

    CAS  PubMed  CrossRef  Google Scholar 

  49. Streubel A, Siepmann J, Bodmeier R (2003) Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release. Eur J Pharm Sci 18(1):37–45

    CAS  PubMed  CrossRef  Google Scholar 

  50. Streubel A, Siepmann J, Bodmeier R (2003) Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles. J Microencapsul 20(3):329–347

    CAS  PubMed  CrossRef  Google Scholar 

  51. Talukder R, Fassihi R (2004) Gastroretentive delivery systems: hollow beads. Drug Dev Ind Pharm 30(4):405–412

    CAS  PubMed  CrossRef  Google Scholar 

  52. Kedzierewicz F et al (1999) Evaluation of peroral silicone dosage forms in humans by gamma-scintigraphy. J Control Release 58(2):195–205

    CAS  PubMed  CrossRef  Google Scholar 

  53. Klausner EA et al (2003) Novel levodopa gastroretentive dosage form: in-vivo evaluation in dogs. J Control Release 88(1):117–126

    CAS  PubMed  CrossRef  Google Scholar 

  54. Chen J et al (2000) Gastric retention properties of superporous hydrogel composites. J Control Release 64(1–3):39–51

    CAS  PubMed  CrossRef  Google Scholar 

  55. Huang Y et al (2000) Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release 65(1–2):63–71

    CAS  PubMed  CrossRef  Google Scholar 

  56. Vasir JK, Tambwekar K, Garg S (2003) Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 255(1–2):13–32

    CAS  PubMed  CrossRef  Google Scholar 

  57. Singh B et al (2012) Formulation development of gastroretentive tablets of lamivudine using the floating-bioadhesive potential of optimized polymer blends. J Pharm Pharmacol 64(5):654–669

    CAS  PubMed  CrossRef  Google Scholar 

  58. Groning R, Berntgen M, Georgarakis M (1998) Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit. Eur J Pharm Biopharm 46(3):285–291

    CAS  PubMed  CrossRef  Google Scholar 

  59. Bhandari A, Crowe SE (2012) Helicobacter pylori in gastric malignancies. Curr Gastroenterol Rep 14(6):489–496

    PubMed  CrossRef  Google Scholar 

  60. Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347(15):1175–1186

    CAS  PubMed  CrossRef  Google Scholar 

  61. Conway BR (2005) Drug delivery strategies for the treatment of Helicobacter pylori infections. Curr Pharm Des 11(6):775–790

    CAS  PubMed  CrossRef  Google Scholar 

  62. Noonan B, Alm RA (2002) Novel intervention strategies for Helicobacter pylori treatment. Curr Drug Targets Infect Disord 2(4):331–338

    CAS  PubMed  CrossRef  Google Scholar 

  63. Touati E (2010) When bacteria become mutagenic and carcinogenic: lessons from H. pylori. Mutat Res 703(1):66–70

    CAS  PubMed  CrossRef  Google Scholar 

  64. Malfertheiner P et al (2007) Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut 56(6):772–781

    CAS  PubMed  CrossRef  Google Scholar 

  65. Niv Y (2008) H pylori recurrence after successful eradication. World J Gastroenterol 14(10):1477–1478

    PubMed  CrossRef  Google Scholar 

  66. Megraud F (2004) H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut 53(9):1374–1384

    CAS  PubMed  CrossRef  Google Scholar 

  67. De Francesco V et al (2010) Worldwide H. pylori antibiotic resistance: a systematic review. J Gastrointestin Liver Dis 19(4):409–414

    PubMed  Google Scholar 

  68. Yang L, Eshraghi J, Fassihi R (1999) A new intragastric delivery system for the treatment of Helicobacter pylori associated gastric ulcer: in vitro evaluation. J Control Release 57(3):215–222

    CAS  PubMed  CrossRef  Google Scholar 

  69. Liu Z et al (2005) In vitro and in vivo studies on mucoadhesive microspheres of amoxicillin. J Control Release 102(1):135–144

    CAS  PubMed  CrossRef  Google Scholar 

  70. Umamaheshwari RB, Jain NK (2004) Receptor-mediated targeting of lipobeads bearing acetohydroxamic acid for eradication of Helicobacter pylori. J Control Release 99(1):27–40

    CAS  PubMed  CrossRef  Google Scholar 

  71. Iijima K et al (2004) Long-term effect of Helicobacter pylori eradication on the reversibility of acid secretion in profound hypochlorhydria. Aliment Pharmacol Ther 19(11):1181–1188

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arik Dahan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Wolk, O., Dahan, A. (2014). Segmental-Dependent Drug Absorption and Delivery: The Stomach. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_15

Download citation