Advertisement

Multiobjective Linear Programming

  • Masatoshi Sakawa
  • Hitoshi Yano
  • Ichiro Nishizaki
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 203)

Abstract

The problem to optimize multiple conflicting linear objective functions simultaneously under the given linear constraints is called the multiobjective linear programming problem. This chapter begins with a discussion of fundamental notions and methods of multiobjective linear programming. After introducing the notion of Pareto optimality, several methods for characterizing Pareto optimal solutions including the weighting method, the constraint method, and the weighted minimax method are explained, and goal programming and compromise programming are also introduced. Extensive discussions of interactive multiobjective linear programming conclude this chapter.

Keywords

Linear Programming Problem Pareto Optimal Solution Ideal Point Pareto Optimality Minimax Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Benayoun, R., de Montgolfier, J., Tergny, J., & Larichev, O. I. (1971). Linear programming with multiple objective functions: STEP method (STEM). Mathematical Programming, 1, 366–375.CrossRefGoogle Scholar
  2. Bowman, V. J. (1976). On the relationship of the Tchebycheff norm and the efficient frontier of multi-criteria objectives. In H. Thiriez, & S. Zionts (Eds.), Multiple criteria decision making (pp. 76–86). Berlin: Springer.CrossRefGoogle Scholar
  3. Changkong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. Amsterdam: North-Holland.Google Scholar
  4. Charnes, A., & Cooper, W. W. (1977). Goal programming and multiple objective optimizations. European Journal of Operational Research, 1, 39–54.CrossRefGoogle Scholar
  5. Choo, E. U., & Atkins, D. R. (1980). An interactive algorithm for multicriteria programming. Computer and Operations Research, 7, 81–87.CrossRefGoogle Scholar
  6. Fichefet, J. (1976). GPSTEM: an interactive multiobjective optimization method. Progress in operations research (Vol. 1, pp. 317–332). Amsterdam: North-Holland.Google Scholar
  7. Haimes, Y. Y., & Hall, W. A. (1974). Multiobjectives in water resources systems analysis: the surrogate worth trade-off method. Water Resources Research, 10, 614–624.Google Scholar
  8. Haimes, Y. Y., Lasdon, L., & Wismer, D. (1971). On a bicriteria formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics, SMC-1, 296–297.Google Scholar
  9. Ignizio, J. P. (1976). Goal programming and extensions. Lexington: Lexington Books, D. C. Heath and Company.Google Scholar
  10. Ingnizio, J. P. (1982). Linear programming in single and multiple objective systems. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  11. Ignizio, J. P. (1983). Generalized goal programming: an overview. Computer and Operations Research, 10, 277–289.CrossRefGoogle Scholar
  12. Ijiri, Y. (1965). Management goals and accounting for control. Amsterdam: North-Holland.Google Scholar
  13. Köksalan, M., Wallenius, J., & Zionts, S. (2011). Multiple criteria decision making: From early history to the 21st century. New Jersey, World Scientific.CrossRefGoogle Scholar
  14. Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In J. Neyman (Ed.), Proceedings of the second berkeley symposium on mathematical statistics and probability (pp. 481–492). California: University of California Press.Google Scholar
  15. Lee, S. M. (1972). Goal programming for decision analysis. Philadelphia: Auerbach.Google Scholar
  16. March, J. G., & Simon H. A. (1958). Organizations. New York: Wiley.Google Scholar
  17. Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer.Google Scholar
  18. Miettinen, K., Ruiz, F., & Wierzbicki, A. P. (2008). Introduction to multiobjective optimization: interactive approaches. In J. Branke, K. Deb, K. Miettinen, & R. Słowiǹski (Eds.), Multiobjective optimization: Interactive and evolutionary approach (pp. 25–57). Berlin, Heidelberg: Springer.Google Scholar
  19. Sakawa, M. (1993). Fuzzy sets and interactive multiobjective optimization. New York: Plenum Press.CrossRefGoogle Scholar
  20. Sakawa, M., Yano, H., & Yumine, T. (1987). An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application. IEEE Transactions on Systems, Man, and Cybernetics, SMC-17, 654–661.CrossRefGoogle Scholar
  21. Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley.Google Scholar
  22. Steuer, R. E., & Choo, E. U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26, 326–344.CrossRefGoogle Scholar
  23. Vanderpooten, D., & Vincke, P. (1989). Description and analysis of some representative interactive multicriteria procedures. Mathematical and Computer Modelling, 12, 1221–1238.CrossRefGoogle Scholar
  24. Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel, & T. Gal (Eds.), Multiple criteria decision making: Theory and application (pp. 468–486). Berlin: Springer.CrossRefGoogle Scholar
  25. Yu, P. L. (1973). A class of solutions for group decision problems. Management Science, 19, 936–946.CrossRefGoogle Scholar
  26. Zadeh, L. A. (1963). Optimality and non-scalar valued performance criteria. IEEE Transactions on Automatic Control, AC-8, 59–60.CrossRefGoogle Scholar
  27. Zeleny, M. (1973). Compromise programming. In J. L. Chochrane, & M. Zeleny (Eds.), Multiple criteria decision making (pp. 262–301). Columbia, SC: University of South Carolina Press.Google Scholar
  28. Zeleny, M. (1976). The theory of displaced ideal. In M. Zeleny (Ed.), Multiple criteria decision making, Kyoto, 1975 (pp. 153–206). New York: Springer.Google Scholar
  29. Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Masatoshi Sakawa
    • 1
  • Hitoshi Yano
    • 2
  • Ichiro Nishizaki
    • 1
  1. 1.Department of System Cybernetics Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Social Sciences Graduate School of Humanities and Social SciencesNagoya City UniversityNagoyaJapan

Personalised recommendations