Skip to main content

Towards Redesigning Cellulose Biosynthesis for Improved Bioenergy Feedstocks

  • Chapter
  • First Online:
Book cover Plants and BioEnergy

Part of the book series: Advances in Plant Biology ((AIPB,volume 4))

Abstract

With an estimated 200 billion tons produced annually, cellulose is the most abundant biopolymer on earth. Cellulose is expected to be the principal feedstock for liquid biofuels and bio-based products, but its para-crystalline nature results in recalcitrance to deconstruction required for biological and chemical conversion to useful products. Recent work solving the 3D structure of a bacterial cellulose synthase, modeling of plant cellulose synthases, and the 3D contour structure of the catalytic domain of a plant cellulose synthase have contributed new perspectives on the organization of catalytic units in the rosette complex. These discoveries stimulate new approaches to engineer the complex to make altered forms of cellulose for enhancing efficiency of biomass deconstruction for biofuel production or for synthesis of new materials and nanoproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Nat Acad Sci USA 92:9353–9357

    Article  PubMed  CAS  Google Scholar 

  • Atanassov II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284:3833–3841

    Article  PubMed  CAS  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Nat Acad Sci USA 109:321–326

    Article  PubMed  Google Scholar 

  • Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Nat Acad Sci USA 106:13124–13129

    Article  PubMed  CAS  Google Scholar 

  • Bischoff V, Silvia N, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR (2010) TRICHOME BIREFRINGENCE and its homolog At5g01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol 153:590–602

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bowling AJ, Brown RM (2008) Cytoplasmic domain of cellulose synthesizing complexes in plants. Protoplasma 233:115–127

    Article  PubMed  CAS  Google Scholar 

  • Brady SM, Zhang L, Megraw M, Martinez NJ, Jiang E, Yi CS, Liu W, Zeng A, Taylor-Teeples M, Kim D et al (2010) A stele-enriched gene regulatory network in the Arabidopsis root. Mol Syst Biol 7: Art. No. 459

    Google Scholar 

  • Carpita NC, Vergara CE (1998) A recipe for cellulose. Science 279:672–673

    Google Scholar 

  • Carpita NC (2011) Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1 → 4)-β-D-glycans. Plant Physiol 155:171–184

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Ehrhardt DW, Somerville CR (2010) Mutations of cellulose synthase (CESA1) phosphorylation sites module anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Nat Acad Sci USA 107:17188–17193

    Article  PubMed  CAS  Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Nat Acad Sci USA 106:13118

    Article  PubMed  CAS  Google Scholar 

  • Collings DA, Gebbie LK, Howles PA, Hurley UA, Birch RJ, Cork AH, Hocart CH, Arioli T, Williamson RE (2008) Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion. J Exp Bot 59:361–376

    Article  PubMed  CAS  Google Scholar 

  • Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof Y-D, Schumacher K, Gonneau M, Höfte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154

    Article  PubMed  CAS  Google Scholar 

  • Crowell EF, Gonneau M, Stierhof Y-D, Höfte H, Vernhettes S (2010) Regulated trafficking of cellulose synthases. Curr Opin Plant Biol 13:700–705

    Article  PubMed  CAS  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  PubMed  CAS  Google Scholar 

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 104:15572–15577

    Article  PubMed  CAS  Google Scholar 

  • Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Nat Acad Sci USA 108:E1195–E1203

    Article  PubMed  Google Scholar 

  • Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51:294–301

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Arimura S, Ueda T, Takanashi H, Hayashi Y, Nakano A, Tsutsumi N (2010) Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc Nat Acad Sci USA 107:6094–6099

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339

    Article  PubMed  Google Scholar 

  • Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Persson S, Somerville C (2010) Identification of a cellulose-synthase-associated protein required for cellulose biosynthesis. Proc Nat Acad Sci USA 107:12866–12871

    Article  PubMed  Google Scholar 

  • Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–808

    Article  PubMed  CAS  Google Scholar 

  • Haigler CH, Brown RM Jr (1986) Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–120

    Article  Google Scholar 

  • Herth W (1985) Plasma-membrane rosettes involved in localized wall thickening during xylem vessel formation of Lepidium sativum L. Planta 164:12–21

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2010) Rice BRITTLE CULM3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta 232:95–108

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Wilk D, Kurek I, Hogan P, Delmer DP (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Nat Acad Sci USA 103:12191–12196

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CJ, Cameron GJ, Sturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246

    Article  CAS  Google Scholar 

  • Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Nat Acad Sci USA 99:11109–11114

    Article  PubMed  CAS  Google Scholar 

  • Li S, Lei L, Somerville CR, Gu Y (2012) CSI1 links microtubules and cellulose synthase complexes. Proc Nat Acad Sci USA 109:185–190

    Article  PubMed  CAS  Google Scholar 

  • Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186

    Article  PubMed  CAS  Google Scholar 

  • Mueller SC, Brown RM Jr (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol 84:315–326

    Article  PubMed  CAS  Google Scholar 

  • Olek AT, Rayon C, Makowski L, Kim HR, Ciesielski P, Badger J, Paul LN, Ghosh S, Kihara D, Crowley M, Himmel ME, Bolin JT, Carpita NC (2013) Small-angle x-ray scattering reveals the structure of the catalytic domain of a cellulose synthase and its assembly into dimers. In review

    Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  PubMed  CAS  Google Scholar 

  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Nat Acad Sci USA 93:12637–12642

    Article  PubMed  CAS  Google Scholar 

  • Penning BW, Hunter CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC (2009) Genetic resources for maize cell wall biology. Plant Physiol 151:1703–1728

    Google Scholar 

  • Potikha T, Delmer DP (1995) A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J 7:453–460

    Article  CAS  Google Scholar 

  • Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17:1749–1763

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Suzuki R, Nishikubo N, Takenouchi S, Ito S, Nakano Y, Nakaba S, Sano Y, Funada R, Kajita S, Kitano H, Katayama Y (2010) Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components. Planta 232:257–270

    Article  PubMed  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–1424

    PubMed  CAS  Google Scholar 

  • Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–1127

    Article  PubMed  CAS  Google Scholar 

  • Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, Debolt S, Yingling Y (2013) Tertiary model of a plant cellulose synthase. Proc Nat Acad Sci USA 110:7512–7517

    Article  PubMed  CAS  Google Scholar 

  • Sindhu A, Langewisch T, Olek A, Multani DS, McCann MC, Vermerris W, Carpita NC, Johal G (2007) Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol 145:1444–1459

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Kruger NJ, Lunn JE (2012) Source of sugar nucleotides for starch and cellulose synthesis. Proc Nat Acad Sci USA 109:E776–E776

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG (2011) A role for Arabidopsis dynamin related proteins DRP2A/B in endocytosis; DRP2 function is essential for plant growth. Plant Mol Biol 76:117–129

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Nat Acad Sci USA 100:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Thomas LH, Forsyth VT, Sturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476

    Article  PubMed  CAS  Google Scholar 

  • Timmers J, Vernhettes S, Desprez T, Vincken JP, Visser RGF, Trindade LM (2009) Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Lett 583:978–982

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229

    Article  PubMed  CAS  Google Scholar 

  • Vergara CE, Carpita NC (2001) β-D-Glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1 → 3), (1 → 4)-β-D-glucan synthase. Plant Mol Biol 47:145–160

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Elliott JE, Williamson RE (2008) Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. J Exp Bot 59:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Lee C, Ye Z-H (2010) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trens Plant Sci 15:625–632

    Google Scholar 

Download references

Acknowledgments

This review was completed through support of the Center for Direct Catalytic Conversion of Biomass to Biofuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE–SC0000997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Carpita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rayon, C., Olek, A.T., Carpita, N.C. (2014). Towards Redesigning Cellulose Biosynthesis for Improved Bioenergy Feedstocks. In: McCann, M., Buckeridge, M., Carpita, N. (eds) Plants and BioEnergy. Advances in Plant Biology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9329-7_11

Download citation

Publish with us

Policies and ethics