Optical Imaging of Mitochondria for Cancer Therapy



Mitochondria are essential organelles that provide most of the energy to eukaryotic cells and also regulate programmed cell death. Optical imaging has been used for over 100 years to visualize and characterize these organelles. In recent years, new and improved optical imaging approaches have been used for functional imaging of mitochondria. Notably, several novel small molecule imaging probes have been developed, alongside fluorescent protein probes, to permit optical imaging of mitochondria to shed light on the molecular functioning of the organelle and associated proteins in disease. This chapter examines an historic perspective on some of the major developments in optical imaging of mitochondria.


Fluorescence imaging Optical imaging Mitochondria Imaging probes 


  1. Abou-Sleiman PM, Muqit MMK, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219PubMedCrossRefGoogle Scholar
  2. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  3. Browne EN (1914) The effects of centrifuging the spermatocyte cells of Notonecta, with special reference to the mitochondria. J Exp Zoo 17:337–341CrossRefGoogle Scholar
  4. Castellani R, Hirai K, Aliev G et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360PubMedCrossRefGoogle Scholar
  5. Celli JP, Spring BQ, Rizvi I et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring and optimization. Chem Rev 110:2795–2838PubMedCrossRefGoogle Scholar
  6. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164PubMedCrossRefGoogle Scholar
  7. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930PubMedCrossRefGoogle Scholar
  8. Cottet-Rousselle C, Ronot X, Leverve X, Mayol J-F (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79A:405–425CrossRefGoogle Scholar
  9. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966CrossRefGoogle Scholar
  10. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639PubMedCrossRefGoogle Scholar
  11. Dunn KW, Sandoval RM, Kelly KJ et al (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283:C905–C916PubMedCrossRefGoogle Scholar
  12. Earley S, Vinegoni C, Dunham J et al (2012) In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution. Cancer Res 72:2949–2956PubMedCrossRefGoogle Scholar
  13. Elmore S (2007) Apoptosis: A review of programmed cell death. Toxicol Pathol 35:495–516PubMedCrossRefGoogle Scholar
  14. Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s–255sGoogle Scholar
  15. Fonseca SB, Pereira MP, Mourtada R et al (2011) Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem Biol 18:445–453PubMedCrossRefGoogle Scholar
  16. Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Sem Cancer Biol 19:4–11CrossRefGoogle Scholar
  17. Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to warburg hypothesis and beyond. Pharmacol Therapeutics 121:29–40CrossRefGoogle Scholar
  18. Goldstein JC, Waterhouse NJ, Juin P et al (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162PubMedCrossRefGoogle Scholar
  19. Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol Cell Physiol 267:C313–C339Google Scholar
  20. Horton KL, Stewart KM, Fonseca SB et al (2008) Mitochondria-penetrating peptides. Chem Biol 15:375–382PubMedCrossRefGoogle Scholar
  21. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. PNAS 77:990–994PubMedCrossRefGoogle Scholar
  22. Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95PubMedCrossRefGoogle Scholar
  23. Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591PubMedCrossRefGoogle Scholar
  24. Kroemer G (2006) Mitochondria in cancer. Oncogene 25:4630–4632PubMedCrossRefGoogle Scholar
  25. Kubota K (2001) From tumor biology to clinical Pet: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 15:471–486PubMedCrossRefGoogle Scholar
  26. Labro MT, Andrieu MC, Weber M, Homberg JC (1978) A new pattern of non-organ- and non-species-specific anti-organelle antibody detected by immunofluorescence: the mitochondrial antibody number 5. Clin Exp Immunol 31:357–366PubMedGoogle Scholar
  27. Lesnefsky EJ, Moghaddas S, Tandler B et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089PubMedCrossRefGoogle Scholar
  28. Lovell JF, Zheng G (2008) Activatable smart probes for molecular optical imaging and therapy. J Innovative Optical Health Sci 01:45–61CrossRefGoogle Scholar
  29. Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857PubMedCrossRefGoogle Scholar
  30. Lovell JF, Chan MW, Qi Q et al (2011) Porphyrin FRET acceptors for apoptosis induction and monitoring. J Am Chem Soc 133:18580–18582PubMedCrossRefGoogle Scholar
  31. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128PubMedCrossRefGoogle Scholar
  32. Macho A, Decaudin D, Castedo M et al (1996) Chloromethyl-X-Rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis. Cytometry 25:333–340PubMedCrossRefGoogle Scholar
  33. Minamikawa T, Sriratana A, Williams DA et al (1999) Chloromethyl-X-rosamine (MitoTracker Red) photosensitises mitochondria and induces apoptosis in intact human cells. J Cell Sci 112:2419–2430PubMedGoogle Scholar
  34. Misteli T, Spector DL (1997) Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotech 15:961–964CrossRefGoogle Scholar
  35. Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 49:71–86PubMedCrossRefGoogle Scholar
  36. Nadakavukaren KK, Nadakavukaren JJ, Chen LB (1985) Increased rhodamine 123 uptake by carcinoma cells. Cancer Res 45:6093–6099PubMedGoogle Scholar
  37. Oseroff AR, Ohuoha D, Ara G et al (1986) Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. PNAS 83:9729–9733PubMedCrossRefGoogle Scholar
  38. Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. PNAS 103:15038–15043PubMedCrossRefGoogle Scholar
  39. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178PubMedCrossRefGoogle Scholar
  40. Singh G, Jeeves WP, Wilson BC, Jang D (1987) Mitochondrial photosensitization by photofrin ii. Photochem Photobiol 46:645–649PubMedCrossRefGoogle Scholar
  41. Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. PNAS 88:3671–3675PubMedCrossRefGoogle Scholar
  42. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589PubMedCrossRefGoogle Scholar
  43. Zhou Y, Kim Y-S, Yan X et al (2011) 64Cu-Labeled Lissamine Rhodamine B: A Promising PET radiotracer targeting tumor mitochondria. Mol Pharm 8:1198–1208PubMedCrossRefGoogle Scholar
  44. Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-stokes raman scattering. Phys Rev Lett 82:4142–4145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloUSA
  2. 2.Department of Biomedical EngineeringUniversity at BuffaloBuffaloUSA

Personalised recommendations