Skip to main content

Optical Imaging of Mitochondria for Cancer Therapy

  • Chapter
  • First Online:
  • 849 Accesses

Abstract

Mitochondria are essential organelles that provide most of the energy to eukaryotic cells and also regulate programmed cell death. Optical imaging has been used for over 100 years to visualize and characterize these organelles. In recent years, new and improved optical imaging approaches have been used for functional imaging of mitochondria. Notably, several novel small molecule imaging probes have been developed, alongside fluorescent protein probes, to permit optical imaging of mitochondria to shed light on the molecular functioning of the organelle and associated proteins in disease. This chapter examines an historic perspective on some of the major developments in optical imaging of mitochondria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-Sleiman PM, Muqit MMK, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  PubMed  CAS  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Browne EN (1914) The effects of centrifuging the spermatocyte cells of Notonecta, with special reference to the mitochondria. J Exp Zoo 17:337–341

    Article  Google Scholar 

  • Castellani R, Hirai K, Aliev G et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360

    Article  PubMed  CAS  Google Scholar 

  • Celli JP, Spring BQ, Rizvi I et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring and optimization. Chem Rev 110:2795–2838

    Article  PubMed  CAS  Google Scholar 

  • Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  • Cottet-Rousselle C, Ronot X, Leverve X, Mayol J-F (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79A:405–425

    Article  CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966

    Article  CAS  Google Scholar 

  • Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  PubMed  CAS  Google Scholar 

  • Dunn KW, Sandoval RM, Kelly KJ et al (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283:C905–C916

    Article  PubMed  CAS  Google Scholar 

  • Earley S, Vinegoni C, Dunham J et al (2012) In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution. Cancer Res 72:2949–2956

    Article  PubMed  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: A review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed  CAS  Google Scholar 

  • Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s–255s

    Google Scholar 

  • Fonseca SB, Pereira MP, Mourtada R et al (2011) Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem Biol 18:445–453

    Article  PubMed  CAS  Google Scholar 

  • Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Sem Cancer Biol 19:4–11

    Article  CAS  Google Scholar 

  • Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to warburg hypothesis and beyond. Pharmacol Therapeutics 121:29–40

    Article  CAS  Google Scholar 

  • Goldstein JC, Waterhouse NJ, Juin P et al (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162

    Article  PubMed  CAS  Google Scholar 

  • Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol Cell Physiol 267:C313–C339

    CAS  Google Scholar 

  • Horton KL, Stewart KM, Fonseca SB et al (2008) Mitochondria-penetrating peptides. Chem Biol 15:375–382

    Article  PubMed  CAS  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. PNAS 77:990–994

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G (2006) Mitochondria in cancer. Oncogene 25:4630–4632

    Article  PubMed  CAS  Google Scholar 

  • Kubota K (2001) From tumor biology to clinical Pet: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 15:471–486

    Article  PubMed  CAS  Google Scholar 

  • Labro MT, Andrieu MC, Weber M, Homberg JC (1978) A new pattern of non-organ- and non-species-specific anti-organelle antibody detected by immunofluorescence: the mitochondrial antibody number 5. Clin Exp Immunol 31:357–366

    PubMed  CAS  Google Scholar 

  • Lesnefsky EJ, Moghaddas S, Tandler B et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089

    Article  PubMed  CAS  Google Scholar 

  • Lovell JF, Zheng G (2008) Activatable smart probes for molecular optical imaging and therapy. J Innovative Optical Health Sci 01:45–61

    Article  Google Scholar 

  • Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857

    Article  PubMed  CAS  Google Scholar 

  • Lovell JF, Chan MW, Qi Q et al (2011) Porphyrin FRET acceptors for apoptosis induction and monitoring. J Am Chem Soc 133:18580–18582

    Article  PubMed  CAS  Google Scholar 

  • Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  • Macho A, Decaudin D, Castedo M et al (1996) Chloromethyl-X-Rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis. Cytometry 25:333–340

    Article  PubMed  CAS  Google Scholar 

  • Minamikawa T, Sriratana A, Williams DA et al (1999) Chloromethyl-X-rosamine (MitoTracker Red) photosensitises mitochondria and induces apoptosis in intact human cells. J Cell Sci 112:2419–2430

    PubMed  CAS  Google Scholar 

  • Misteli T, Spector DL (1997) Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotech 15:961–964

    Article  CAS  Google Scholar 

  • Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 49:71–86

    Article  PubMed  CAS  Google Scholar 

  • Nadakavukaren KK, Nadakavukaren JJ, Chen LB (1985) Increased rhodamine 123 uptake by carcinoma cells. Cancer Res 45:6093–6099

    PubMed  CAS  Google Scholar 

  • Oseroff AR, Ohuoha D, Ara G et al (1986) Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. PNAS 83:9729–9733

    Article  PubMed  CAS  Google Scholar 

  • Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. PNAS 103:15038–15043

    Article  PubMed  CAS  Google Scholar 

  • Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Jeeves WP, Wilson BC, Jang D (1987) Mitochondrial photosensitization by photofrin ii. Photochem Photobiol 46:645–649

    Article  PubMed  CAS  Google Scholar 

  • Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. PNAS 88:3671–3675

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Kim Y-S, Yan X et al (2011) 64Cu-Labeled Lissamine Rhodamine B: A Promising PET radiotracer targeting tumor mitochondria. Mol Pharm 8:1198–1208

    Article  PubMed  CAS  Google Scholar 

  • Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-stokes raman scattering. Phys Rev Lett 82:4142–4145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Lovell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lovell, J. (2013). Optical Imaging of Mitochondria for Cancer Therapy. In: Chandra, D. (eds) Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9326-6_10

Download citation

Publish with us

Policies and ethics