Advertisement

Nonsmooth Analysis

  • Dumitru Motreanu
  • Viorica Venera Motreanu
  • Nikolaos Papageorgiou
Chapter
  • 1.6k Downloads

Abstract

This chapter offers a systematic presentation of nonsmooth analysis containing all that is necessary in this direction for the rest of the book. The first section of the chapter gathers significant results of convex analysis, especially related to the convex subdifferential such as its property of being a maximal monotone operator. The second section has as its main focus the subdifferentiability theory for locally Lipschitz functions. Further information and references are indicated in a remarks section.

Keywords

Banach Space Convex Function Maximal Monotone Maximal Monotone Operator Critical Point Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. American Mathematical Society, Providence, RI (2002)zbMATHGoogle Scholar
  2. 2.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier/Academic, Amsterdam (2003)zbMATHGoogle Scholar
  3. 3.
    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem. Amer. Math. Soc. 196, 915 (2008)MathSciNetGoogle Scholar
  4. 4.
    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: The spectrum and an index formula for the Neumann p-Laplacian and multiple solutions for problems with a crossing nonlinearity. Discrete Contin. Dyn. Syst. 25, 431–456 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Nonlinear resonant periodic problems with concave terms. J. Math. Anal. Appl. 375, 342–364 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Positive solutions for nonlinear periodic problems with concave terms. J. Math. Anal. Appl. 381, 866–883 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications Inc., New York (1993)zbMATHGoogle Scholar
  8. 8.
    Allegretto, W., Huang, Y.X.: A Picone’s identity for the p-Laplacian and applications. Nonlin. Anal. 32, 819–830 (1998)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Alves, C.O., Carrião, P.C., Miyagaki, O.H.: Multiple solutions for a problem with resonance involving the p-Laplacian. Abstr. Appl. Anal. 3, 191–201 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Amann, H.: Saddle points and multiple solutions of differential equations. Math. Z. 169, 127–166 (1979)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Amann, H.: A note on degree theory for gradient mappings. Proc. Amer. Math. Soc. 85, 591–595 (1982)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Amann, H., Weiss, S.A.: On the uniqueness of the topological degree. Math. Z. 130, 39–54 (1973)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7(4), 539–603 (1980)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ambrosetti, A., Arcoya, D.: An Introduction to Nonlinear Functional Analysis and Elliptic Problems. Birkhäuser, Boston (2011)zbMATHGoogle Scholar
  15. 15.
    Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  16. 16.
    Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)Google Scholar
  17. 17.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Anane, A.: Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305, 725–728 (1987)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Anane, A., Tsouli, N.: On the second eigenvalue of the p-Laplacian. In: Nonlinear Partial Differential Equations (Fès, 1994). Longman, Harlow (1996)Google Scholar
  21. 21.
    Anello, G.: Existence of infinitely many weak solutions for a Neumann problem. Nonlin. Anal. 57, 199–209 (2004)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Appell, J., Zabreĭko, P.P.: Nonlinear Superposition Operators. Cambridge University Press. Cambridge (1990)zbMATHGoogle Scholar
  23. 23.
    Arcoya, D., Carmona, J., Pellacci, B.: Bifurcation for some quasilinear operators. Proc. Roy. Soc. Edinb. Sect. A 131, 733–765 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Arias, M., Campos, J.: Radial Fučik spectrum of the Laplace operator. J. Math. Anal. Appl. 190, 654–666 (1995)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.: Asymmetric elliptic problems with indefinite weights. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 581–616 (2002)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Averna, D., Marano, S.A., Motreanu, D.: Multiple solutions for a Dirichlet problem with p-Laplacian and set-valued nonlinearity. Bull. Aust. Math. Soc. 77, 285–303 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach. Springer, London (2011)Google Scholar
  28. 28.
    Balanov, Z., Krawcewicz, W., Steinlein, H.: Applied Equivariant Degree. American Institute of Mathematical Sciences (AIMS), Springfield (2006)zbMATHGoogle Scholar
  29. 29.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leiden (1976)zbMATHGoogle Scholar
  30. 30.
    Barbu, V.: Analysis and Control of Nonlinear Infinite-Dimensional Systems. Academic Inc., Boston (1993)zbMATHGoogle Scholar
  31. 31.
    Barletta, G., Papageorgiou, N.S.: A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential. J. Global Optim. 39, 365–392 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Barletta, G., Papageorgiou, N.S.: Nonautonomous second order periodic systems: existence and multiplicity of solutions. J. Nonlin. Convex Anal. 8, 373–390 (2007)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlin. Anal. 7, 981–1012 (1983)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Bartsch, T.: Topological Methods for Variational Problems with Symmetries. Lecture Notes in Mathematics, vol. 1560. Springer, Berlin (1993)Google Scholar
  35. 35.
    Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet problem. Nonlin. Anal. 20, 1205–1216 (1993)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Bartsch, T., Li, S.: Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlin. Anal. 28, 419–441 (1997)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Bartsch, T., Liu, Z.: On a superlinear elliptic p-Laplacian equation. J. Differ. Equat. 198, 149–175 (2004)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. London Math. Soc. 91(3), 129–152 (2005)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Benci, V.: On critical point theory for indefinite functionals in the presence of symmetries. Trans. Amer. Math. Soc. 274, 533–572 (1982)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Benci, V., Rabinowitz, P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52, 241–273 (1979)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Ben-Naoum, A.K., De Coster, C.: On the existence and multiplicity of positive solutions of the p-Laplacian separated boundary value problem. Differ. Integr. Equat. 10, 1093–1112 (1997)zbMATHGoogle Scholar
  42. 42.
    Benyamini, Y., Sternfeld, Y.: Spheres in infinite-dimensional normed spaces are Lipschitz contractible. Proc. Amer. Math. Soc. 88, 439–445 (1983)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Bessaga, C.: Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14, 27–31 (1966)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Beurling, A., Livingston, A.E.: A theorem on duality mappings in Banach spaces. Ark. Mat. 4, 405–411 (1962)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Binding, P.A., Rynne, B.P.: The spectrum of the periodic p-Laplacian. J. Differ. Equat. 235, 199–218 (2007)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Binding, P.A., Rynne, B.P.: Variational and non-variational eigenvalues of the p-Laplacian. J. Differ. Equat. 244, 24–39 (2008)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Blanchard, P., Brüning, E.: Variational Methods in Mathematical Physics. Springer, Berlin (1992)zbMATHGoogle Scholar
  48. 48.
    Bonanno, G., Candito, P.: Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian. Arch. Math. (Basel) 80, 424–429 (2003)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)Google Scholar
  50. 50.
    Brezis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18, 115–175 (1968)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973)zbMATHGoogle Scholar
  52. 52.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)zbMATHGoogle Scholar
  53. 53.
    Brezis, H., Nirenberg, L.: Remarks on finding critical points. Comm. Pure Appl. Math. 44, 939–963 (1991)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Brezis, H., Nirenberg, L.: H 1 versus C 1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317, 465–472 (1993)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Amer. Math. Soc. 16, 605–611 (1965)MathSciNetGoogle Scholar
  56. 56.
    Brouwer, L.E.J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)zbMATHGoogle Scholar
  57. 57.
    Browder, F.E.: Nonlinear maximal monotone operators in Banach space. Math. Ann. 175, 89–113 (1968)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Browder, F.E.: Nonlinear monotone and accretive operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 61, 388–393 (1968)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Browder, F.E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. In: Nonlinear Functional Analysis (Proc. Sympos. Pure Math., vol. XVIII, Part 2, Chicago, Ill., 1968), pp. 1–308. American Mathematical Society, Providence (1976)Google Scholar
  60. 60.
    Browder, F.E.: Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. (N.S.) 9, 1–39 (1983)Google Scholar
  61. 61.
    Browder, F.E.: Degree of mapping for nonlinear mappings of monotone type. Proc. Nat. Acad. Sci. USA 80, 1771–1773 (1983)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Browder, F.E., Hess, P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251–294 (1972)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Các, N.P.: On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue. J. Differ. Equat. 80, 379–404 (1989)zbMATHGoogle Scholar
  64. 64.
    Čaklović, L., Li, S.J., Willem, M.: A note on Palais-Smale condition and coercivity. Differ. Integr. Equat. 3, 799–800 (1990)zbMATHGoogle Scholar
  65. 65.
    Cambini, A.: Sul lemma di M. Morse. Boll. Un. Mat. Ital. 7(4), 87–93 (1973)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Candito, P., Livrea, R., Motreanu, D.: \(\mathbb{Z}_{2}\)-symmetric critical point theorems for non-differentiable functions. Glasg. Math. J. 50, 447–466 (2008)Google Scholar
  67. 67.
    Candito, P., Livrea, R., Motreanu, D.: Bounded Palais-Smale sequences for non-differentiable functions. Nonlin. Anal.74, 5446–5454 (2011)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Carl, S., Motreanu, D.: Quasilinear elliptic inclusions of hemivariational type: extremality and compactness of the solution set. J. Math. Anal. Appl. 286, 147–159 (2003)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Carl, S., Motreanu, D.: Constant-sign and sign-changing solutions of a nonlinear eigenvalue problem involving the p-Laplacian. Differ. Integr. Equat. 20, 309–324 (2007)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Carl, S., Motreanu, D.: Constant-sign and sign-changing solutions for nonlinear eigenvalue problems. Nonlin. Anal. 68, 2668–2676 (2008)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Carl, S., Motreanu, D.: Multiple and sign-changing solutions for the multivalued p-Laplacian equation. Math. Nachr. 283, 965–981 (2010)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications. Springer, New York (2007)zbMATHGoogle Scholar
  73. 73.
    Casas, E., Fernández, L.A.: A Green’s formula for quasilinear elliptic operators. J. Math. Anal. Appl. 142, 62–73 (1989)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Castro, A., Lazer, A.C.: Critical point theory and the number of solutions of a nonlinear Dirichlet problem. Ann. Mat. Pura Appl. 120(4), 113–137 (1979)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Cerami, G.: An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend. A 112, 332–336 (1978)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Chang, K.-C.: Solutions of asymptotically linear operator equations via Morse theory. Comm. Pure Appl. Math. 34, 693–712 (1981)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Chang, K.-C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Chang, K.-C.: Infinite-Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)zbMATHGoogle Scholar
  79. 79.
    Chang, K.-C.: H 1 versus C 1 isolated critical points. C. R. Acad. Sci. Paris Sér. I Math. 319, 441–446 (1994)zbMATHGoogle Scholar
  80. 80.
    Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p & q-Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Christensen, J.P.R.: Topology and Borel Structure. North-Holland Publishing Co., Amsterdam (1974)zbMATHGoogle Scholar
  82. 82.
    Ciorănescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers, Dordrecht (1990)zbMATHGoogle Scholar
  83. 83.
    Clark, D.C.: A variant of the Lusternik-Schnirelman theory. Indiana Univ. Math. J. 22, 65–74 (1972/1973)Google Scholar
  84. 84.
    Clarke, F.H.: Generalized gradients and applications. Trans. Amer. Math. Soc. 205, 247–262 (1975)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. A Wiley-Interscience Publication, Wiley Inc., New York (1983)Google Scholar
  86. 86.
    Coffman, C.V.: A minimum-maximum principle for a class of non-linear integral equations. J. Anal. Math. 22, 391–419 (1969)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Cordaro, G.: Three periodic solutions to an eigenvalue problem for a class of second-order Hamiltonian systems. Abstr. Appl. Anal. 2003, 1037–1045 (2003)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Corvellec, J.-N., Motreanu, V.V., Saccon, C.: Doubly resonant semilinear elliptic problems via nonsmooth critical point theory. J. Differ. Equat. 248, 2064–2091 (2010)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Costa, D.G.: An Invitation to Variational Methods in Differential Equations. Birkhäuser, Boston (2007)zbMATHGoogle Scholar
  90. 90.
    Costa, D.G., Magalhães, C.A.: Existence results for perturbations of the p-Laplacian. Nonlin. Anal. 24, 409–418 (1995)zbMATHGoogle Scholar
  91. 91.
    Costa, D.G., Silva, E.A.: The Palais-Smale condition versus coercivity. Nonlin. Anal. 16, 371–381 (1991)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1953)Google Scholar
  93. 93.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Cuesta, M.: Minimax theorems on C 1 manifolds via Ekeland variational principle. Abstr. Appl. Anal. 2003, 757–768 (2003)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Cuesta, M., Ramos Quoirin, H.: A weighted eigenvalue problem for the p-Laplacian plus a potential. NoDEA - Nonlin. Differ. Equat. Appl. 16, 469–491 (2009)MathSciNetzbMATHGoogle Scholar
  96. 96.
    Cuesta, M., Takáč, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integr. Equat. 13, 721–746 (2000)zbMATHGoogle Scholar
  97. 97.
    Cuesta, M., Takáč, P.: Nonlinear eigenvalue problems for degenerate elliptic systems. Differ. Integr. Equat. 23, 1117–1138 (2010)zbMATHGoogle Scholar
  98. 98.
    Cuesta, M., de Figueiredo, D., Gossez, J.-P.: The beginning of the Fučik spectrum for the p-Laplacian. J. Differ. Equat. 159, 212–238 (1999)zbMATHGoogle Scholar
  99. 99.
    Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 493–516 (1998)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Damascelli, L., Sciunzi, B.: Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations. Calc. Var. Partial Differ. Equat. 25, 139–159 (2006)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Dancer, E.N.: Remarks on jumping nonlinearities. In: Topics in Nonlinear Analysis, pp. 101–116. Birkhäuser, Basel (1999)Google Scholar
  102. 102.
    Dancer, E.N., Du, Y.: On sign-changing solutions of certain semilinear elliptic problems. Appl. Anal. 56, 193–206 (1995)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Day, M.M.: Some more uniformly convex spaces. Bull. Amer. Math. Soc. 47, 504–507 (1941)MathSciNetGoogle Scholar
  104. 104.
    de Figueiredo, D.G.: Positive solutions of semilinear elliptic problems. In: Differential Equations (Sao Paulo, 1981). Lecture Notes in Mathematics, vol. 957, pp. 34–87. Springer, Berlin (1982)Google Scholar
  105. 105.
    de Figueiredo, D.G.: Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Bombay (1989)zbMATHGoogle Scholar
  106. 106.
    de Figueiredo, D.G., Gossez, J.-P.: On the first curve of the Fučik spectrum of an elliptic operator. Differ. Integr. Equat. 7, 1285–1302 (1994)zbMATHGoogle Scholar
  107. 107.
    Degiovanni, M., Marzocchi, M.: A critical point theory for nonsmooth functionals. Ann. Mat. Pura Appl. 167(4), 73–100 (1994)MathSciNetzbMATHGoogle Scholar
  108. 108.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)zbMATHGoogle Scholar
  109. 109.
    Del Pezzo, L.M., Fernández Bonder, J.: An optimization problem for the first weighted eigenvalue problem plus a potential. Proc. Amer. Math. Soc. 138, 3551–3567 (2010)MathSciNetzbMATHGoogle Scholar
  110. 110.
    del Pino, M.A., Manásevich, R.F.: Global bifurcation from the eigenvalues of the p-Laplacian. J. Differ. Equat. 92, 226–251 (1991)zbMATHGoogle Scholar
  111. 111.
    del Pino, M.A., Manásevich, R.F., Murúa, A.E.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlin. Anal. 18, 79–92 (1992)zbMATHGoogle Scholar
  112. 112.
    De Nápoli, P., Mariani, M.C.: Mountain pass solutions to equations of p-Laplacian type. Nonlin. Anal. 54, 1205–1219 (2003)zbMATHGoogle Scholar
  113. 113.
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic Publishers, Boston (2003)Google Scholar
  114. 114.
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic Publishers, Boston (2003)Google Scholar
  115. 115.
    Deny, J., Lions, J. L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier Grenoble 5, 305–370 (1953–54)Google Scholar
  116. 116.
    de Paiva, F.O., do Ó, J.M., de Medeiros, E.S.: Multiplicity results for some quasilinear elliptic problems. Topol. Methods Nonlin. Anal. 34, 77–89 (2009)Google Scholar
  117. 117.
    Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces. Longman Scientific and Technical, Harlow (1993)zbMATHGoogle Scholar
  118. 118.
    DiBenedetto, E.: C 1+α local regularity of weak solutions of degenerate elliptic equations. Nonlin. Anal. 7, 827–850 (1983)MathSciNetzbMATHGoogle Scholar
  119. 119.
    Dold, A.: Lectures on Algebraic Topology. Springer, Berlin (1980)zbMATHGoogle Scholar
  120. 120.
    Drábek, P.: On the global bifurcation for a class of degenerate equations. Ann. Mat. Pura Appl. 159(4), 1–16 (1991)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Drábek, P., Manásevich, R.: On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian. Differ. Integr. Equat. 12, 773–788 (1999)zbMATHGoogle Scholar
  122. 122.
    Dugundji, J.: An extension of Tietze’s theorem. Pacific J. Math. 1, 353–367 (1951)MathSciNetzbMATHGoogle Scholar
  123. 123.
    Dugundji, J.: Topology. Allyn and Bacon Inc., Boston (1966)zbMATHGoogle Scholar
  124. 124.
    Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory. Interscience Publishers, Inc., New York (1958)zbMATHGoogle Scholar
  125. 125.
    Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton (1952)zbMATHGoogle Scholar
  126. 126.
    Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)MathSciNetzbMATHGoogle Scholar
  127. 127.
    Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.S.) 1, 443–474 (1979)Google Scholar
  128. 128.
    Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)zbMATHGoogle Scholar
  129. 129.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishing Co., Amsterdam (1976)zbMATHGoogle Scholar
  130. 130.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)zbMATHGoogle Scholar
  131. 131.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC, Boca Raton (1992)zbMATHGoogle Scholar
  132. 132.
    Fabry, C., Fonda, A.: Periodic solutions of nonlinear differential equations with double resonance. Ann. Mat. Pura Appl. 157(4), 99–116 (1990)MathSciNetzbMATHGoogle Scholar
  133. 133.
    Fadell, E.R., Rabinowitz, P.H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45, 139–174 (1978)MathSciNetzbMATHGoogle Scholar
  134. 134.
    Fadell, E.R., Husseini, S.Y., Rabinowitz, P.H.: Borsuk-Ulam theorems for arbitrary S 1 actions and applications. Trans. Amer. Math. Soc. 274, 345–360 (1982)MathSciNetzbMATHGoogle Scholar
  135. 135.
    Faraci, F.: Three periodic solutions for a second order nonautonomous system. J. Nonlin. Convex Anal. 3, 393–399 (2002)MathSciNetzbMATHGoogle Scholar
  136. 136.
    Faria, L.F.O., Miyagaki, O.H., Motreanu, D.: Comparison and positive solutions for problems with (p, q)-Laplacian and convection term. Proc. Edinb. Math. Soc. (2) (to appear)Google Scholar
  137. 137.
    Fernández Bonder, J., Del Pezzo, L.M.: An optimization problem for the first eigenvalue of the p-Laplacian plus a potential. Commun. Pure Appl. Anal. 5, 675–690 (2006)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Filippakis, M.E., Papageorgiou, N.S.: Solutions for nonlinear variational inequalities with a nonsmooth potential. Abstr. Appl. Anal. 8, 635–649 (2004)MathSciNetGoogle Scholar
  139. 139.
    Finn, R., Gilbarg, D.: Asymptotic behavior and uniqueness of plane subsonic flows. Comm. Pure Appl. Math. 10, 23–63 (1957)MathSciNetzbMATHGoogle Scholar
  140. 140.
    Floret, K.: Weakly Compact Set. Lecture Notes in Mathematics, vol. 801. Springer, Berlin (1980)Google Scholar
  141. 141.
    Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. The Clarendon Press and Oxford University Press, New York (1995)zbMATHGoogle Scholar
  142. 142.
    Fredholm, J.: Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903)MathSciNetzbMATHGoogle Scholar
  143. 143.
    Fučík, S.: Boundary value problems with jumping nonlinearities. Časopis Pěst. Mat. 101, 69–87 (1976)zbMATHGoogle Scholar
  144. 144.
    Führer, L.: Ein elementarer analytischer Beweis zur Eindeutigkeit des Abbildungsgrades im Rn. Math. Nachr. 54, 259–267 (1972)MathSciNetzbMATHGoogle Scholar
  145. 145.
    Gagliardo, E.: Proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 7, 102–137 (1958)MathSciNetzbMATHGoogle Scholar
  146. 146.
    Gallouët, T., Kavian, O.: Résultats d’existence et de non-existence pour certains problèmes demi-linéaires à l’infini. Ann. Fac. Sci. Toulouse Math. 3(5), 201–246 (1981)MathSciNetzbMATHGoogle Scholar
  147. 147.
    García Azorero, J.P., Manfredi, J.J., Peral Alonso, I.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2, 385–404 (2000)MathSciNetzbMATHGoogle Scholar
  148. 148.
    Garofalo, N., Lin, F.-H.: Unique continuation for elliptic operators: a geometric-variational approach. Comm. Pure Appl. Math. 40, 347–366 (1987)MathSciNetzbMATHGoogle Scholar
  149. 149.
    Gasiński, L.: Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete Contin. Dyn. Syst. 17, 143–158 (2007)MathSciNetzbMATHGoogle Scholar
  150. 150.
    Gasiński, L., Papageorgiou, N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman and Hall/CRC, Boca Raton (2005)zbMATHGoogle Scholar
  151. 151.
    Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman and Hall/CRC, Boca Raton, FL (2006)zbMATHGoogle Scholar
  152. 152.
    Gasiński, L., Papageorgiou, N.S.: Three nontrivial solutions for periodic problems with the p-Laplacian and a p-superlinear nonlinearity. Commun. Pure Appl. Anal. 8, 1421–1437 (2009)MathSciNetzbMATHGoogle Scholar
  153. 153.
    Gasiński, L., Papageorgiou, N.S.: Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential. Nonlin. Anal. 71, 5747–5772 (2009)zbMATHGoogle Scholar
  154. 154.
    Gasiński, L., Papageorgiou, N.S.: Multiple solutions for asymptotically (p − 1)-homogeneous p-Laplacian equations. J. Funct. Anal. 262, 2403–2435 (2012)MathSciNetzbMATHGoogle Scholar
  155. 155.
    Gasiński, L., Papageorgiou, N.S.: Bifurcation-type results for nonlinear parametric elliptic equations. Proc. Roy. Soc. Edinb. Sect. A 142, 595–623 (2012)Google Scholar
  156. 156.
    Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  157. 157.
    Ghoussoub, N., Preiss, D.: A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire 6, 321–330 (1989)MathSciNetzbMATHGoogle Scholar
  158. 158.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)zbMATHGoogle Scholar
  159. 159.
    Giles, J.R.: Convex Analysis with Application in the Differentiation of Convex Functions. Pitman, Boston (1982)zbMATHGoogle Scholar
  160. 160.
    Godoy, T., Gossez, J.-P., Paczka, S.: On the antimaximum principle for the p-Laplacian with indefinite weight. Nonlin. Anal. 51, 449–467 (2002)MathSciNetzbMATHGoogle Scholar
  161. 161.
    Goeleven, D., Motreanu, D.: A degree-theoretic approach for the study of eigenvalue problems in variational-hemivariational inequalities. Differ. Integr. Equat. 10, 893–904 (1997)MathSciNetzbMATHGoogle Scholar
  162. 162.
    Goeleven, D., Motreanu, D., Panagiotopoulos, P.D.: Eigenvalue problems for variational-hemivariational inequalities at resonance. Nonlin. Anal. 33, 161–180 (1998)MathSciNetzbMATHGoogle Scholar
  163. 163.
    Gossez, J.-P., Omari, P.: Periodic solutions of a second order ordinary differential equation: a necessary and sufficient condition for nonresonance. J. Differ. Equat. 94, 67–82 (1991)MathSciNetzbMATHGoogle Scholar
  164. 164.
    Gossez, J.-P., Omari, P.: A necessary and sufficient condition of nonresonance for a semilinear Neumann problem. Proc. Amer. Math. Soc. 114, 433–442 (1992)MathSciNetzbMATHGoogle Scholar
  165. 165.
    Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)zbMATHGoogle Scholar
  166. 166.
    Gromoll, D., Meyer, W.: On differentiable functions with isolated critical points. Topology 8, 361–369 (1969)MathSciNetzbMATHGoogle Scholar
  167. 167.
    Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlin. Anal. 13, 879–902 (1989)zbMATHGoogle Scholar
  168. 168.
    Guo, Z., Zhang, Z.: W 1, p versus C 1 local minimizers and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 286, 32–50 (2003)MathSciNetzbMATHGoogle Scholar
  169. 169.
    Halmos, P.R.: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. AMS Chelsea Publishing, Providence (1998)zbMATHGoogle Scholar
  170. 170.
    Heinz, E.: An elementary analytic theory of the degree of mapping in n-dimensional space. J. Math. Mech. 8, 231–247 (1959)MathSciNetzbMATHGoogle Scholar
  171. 171.
    Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. IV. Gött. Nachr. 1906, 157–227 (1906)zbMATHGoogle Scholar
  172. 172.
    Hofer, H.: Variational and topological methods in partially ordered Hilbert spaces. Math. Ann. 261, 493–514 (1982)MathSciNetzbMATHGoogle Scholar
  173. 173.
    Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem. J. London Math. Soc. 31(2), 566–570 (1985)MathSciNetzbMATHGoogle Scholar
  174. 174.
    Hu, S., Papageorgiou, N.S.: Generalizations of Browder’s degree theory. Trans. Amer. Math. Soc. 347, 233–259 (1995)MathSciNetzbMATHGoogle Scholar
  175. 175.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. vol. I. Theory. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  176. 176.
    Hu, S., Papageorgiou, N.S.: Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian. Nonlin. Anal. 69, 4286–4300 (2008)MathSciNetzbMATHGoogle Scholar
  177. 177.
    Hu, S., Papageorgiou, N.S.: Nontrivial solutions for superquadratic nonautonomous periodic systems. Topol. Methods Nonlin. Anal. 34, 327–338 (2009)MathSciNetzbMATHGoogle Scholar
  178. 178.
    Hu, S., Papageorgiou, N.S.: Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin. Tohoku Math. J. 62(2), 137–162 (2010)MathSciNetzbMATHGoogle Scholar
  179. 179.
    Iannacci, R., Nkashama, M.N.: Nonlinear boundary value problems at resonance. Nonlin. Anal. 11, 455–473 (1987)MathSciNetzbMATHGoogle Scholar
  180. 180.
    Iannacci, R., Nkashama, M.N.: Nonlinear two-point boundary value problems at resonance without Landesman-Lazer condition. Proc. Amer. Math. Soc. 106, 943–952 (1989)MathSciNetzbMATHGoogle Scholar
  181. 181.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Co., Amsterdam (1979)zbMATHGoogle Scholar
  182. 182.
    Ize, J., Vignoli, A.: Equivariant Degree Theory. Walter de Gruyter and Co., Berlin (2003)zbMATHGoogle Scholar
  183. 183.
    Jabri, Y.: The Mountain Pass Theorem: Variants, Generalizations and Some Applications. Cambridge University Press, Cambridge (2003)Google Scholar
  184. 184.
    Jebelean, P., Motreanu, D., Motreanu, V.V.: A unified approach for a class of problems involving a pseudo-monotone operator. Math. Nachr. 281, 1283–1293 (2008)MathSciNetzbMATHGoogle Scholar
  185. 185.
    Jiu, Q., Su, J.: Existence and multiplicity results for Dirichlet problems with p-Laplacian. J. Math. Anal. Appl. 281, 587–601 (2003)MathSciNetzbMATHGoogle Scholar
  186. 186.
    Jost, J.: Partial Differential Equations. Springer, New York (2002)zbMATHGoogle Scholar
  187. 187.
    Kačurovskiĭ, R.I.: Monotone operators and convex functionals. Uspekhi Mat. Nauk 154(94), 213–215 (1960)Google Scholar
  188. 188.
    Kačurovskiĭ, R.I.: Nonlinear monotone operators in Banach spaces. Uspekhi Mat. Nauk 232(140), 121–168 (1968)Google Scholar
  189. 189.
    Kartsatos, A.G., Skrypnik, I.V.: Topological degree theories for densely defined mappings involving operators of type (S +). Adv. Differ. Equat. 4, 413–456 (1999)MathSciNetzbMATHGoogle Scholar
  190. 190.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)zbMATHGoogle Scholar
  191. 191.
    Kavian, O.: Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. Springer, Paris (1993)zbMATHGoogle Scholar
  192. 192.
    Kenmochi, N.: Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations. Hiroshima Math. J. 4, 229–263 (1974)MathSciNetzbMATHGoogle Scholar
  193. 193.
    Kenmochi, N.: Pseudomonotone operators and nonlinear elliptic boundary value problems. J. Math. Soc. Japan 27, 121–149 (1975)MathSciNetzbMATHGoogle Scholar
  194. 194.
    Khan, A.A., Motreanu, D.: Local minimizers versus X-local minimizers. Optim. Lett. 7, 1027–1033 (2013)MathSciNetzbMATHGoogle Scholar
  195. 195.
    Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to PDEs. Springer, New York (2004)Google Scholar
  196. 196.
    Kien, B.T., Wong, M.M., Wong, N.-C.: On the degree theory for general mappings of monotone type. J. Math. Anal. Appl. 340, 707–720 (2008)MathSciNetzbMATHGoogle Scholar
  197. 197.
    Kobayashi, J., Ôtani, M.: Topological degree for (S)+-mappings with maximal monotone perturbations and its applications to variational inequalities. Nonlin. Anal. 59, 147–172 (2004)zbMATHGoogle Scholar
  198. 198.
    Kobayashi, J., Ôtani, M.: An index formula for the degree of (S)+-mappings associated with one-dimensional p-Laplacian. Abstr. Appl. Anal. 2004, 981–995 (2004)zbMATHGoogle Scholar
  199. 199.
    Kobayashi, J., Ôtani, M.: Degree for subdifferential operators in Hilbert spaces. Adv. Math. Sci. Appl. 14, 307–325 (2004)MathSciNetzbMATHGoogle Scholar
  200. 200.
    Kobayashi, J., Ôtani, M.: The principle of symmetric criticality for non-differentiable mappings. J. Funct. Anal. 214, 428–449 (2004)MathSciNetzbMATHGoogle Scholar
  201. 201.
    Kondrachov, W.: Sur certaines propriétés des fonctions dans l’espace. C. R. (Doklady) Acad. Sci. URSS (N.S.) 48, 535–538 (1945)Google Scholar
  202. 202.
    Krasnosel’skiĭ, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. The Macmillan Co., New York (1964)Google Scholar
  203. 203.
    Krasnosel’skiĭ, M.A., Zabreĭko, P.P., Pustyl’nik, E.I., Sobolevskiĭ, P.E.: Integral Operators in Spaces of Summable Functions. Noordhoff International Publishing, Leiden (1976)Google Scholar
  204. 204.
    Krawcewicz, W., Marzantowicz, W.: Some remarks on the Lusternik-Schnirel’man method for nondifferentiable functionals invariant with respect to a finite group action. Rocky Mountain J. Math. 20, 1041–1049 (1990)MathSciNetzbMATHGoogle Scholar
  205. 205.
    Krawcewicz, W., Wu, J.: Theory of Degrees with Applications to Bifurcations and Differential Equations. Wiley Inc., New York (1997)zbMATHGoogle Scholar
  206. 206.
    Kufner, A.: Weighted Sobolev Spaces. Wiley Inc., New York (1985)zbMATHGoogle Scholar
  207. 207.
    Kufner, A., John, O., Fučík, S.: Function Spaces. Noordhoff International Publishing, Leyden (1977)zbMATHGoogle Scholar
  208. 208.
    Kuiper, N.H.: C 1-equivalence of functions near isolated critical points. In: Symposium on Infinite-Dimensional Topology (Louisiana State University, Baton Rouge, LA, 1967). Annals of Mathematics Studies, vol. 69, pp. 199–218. Princeton University Press, Princeton (1972)Google Scholar
  209. 209.
    Kuo, C.C.: On the solvability of a nonlinear second-order elliptic equation at resonance. Proc. Amer. Math. Soc. 124, 83–87 (1996)MathSciNetzbMATHGoogle Scholar
  210. 210.
    Kyritsi, S.T., Papageorgiou, N.S.: Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities. Nonlin. Anal. 61, 373–403 (2005)MathSciNetzbMATHGoogle Scholar
  211. 211.
    Kyritsi, S.T., Papageorgiou, N.S.: Solutions for doubly resonant nonlinear non-smooth periodic problems. Proc. Edinb. Math. Soc. 48(2), 199–211 (2005)MathSciNetzbMATHGoogle Scholar
  212. 212.
    Kyritsi, S.T., Papageorgiou, N.S.: Positive solutions for the periodic scalar p-Laplacian: existence and uniqueness. Taiwanese J. Math. 16, 1345–1361 (2012)MathSciNetzbMATHGoogle Scholar
  213. 213.
    Kyritsi, S.T., Papageorgiou, N.S.: Multiple solutions for nonlinear elliptic equations with an asymmetric reaction term. Discrete Contin. Dyn. Syst. Ser. A 33, 2469–2494 (2013)MathSciNetzbMATHGoogle Scholar
  214. 214.
    Kyritsi, S.T., O’Regan, D., Papageorgiou, N.S.: Existence of multiple solutions for nonlinear Dirichlet problems with a nonhomogeneous differential operator. Adv. Nonlin. Stud. 10, 631–657 (2010)MathSciNetzbMATHGoogle Scholar
  215. 215.
    Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic, New York (1968)zbMATHGoogle Scholar
  216. 216.
    Landesman, E.M., Lazer, A.C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 609–623 (1969/1970)Google Scholar
  217. 217.
    Laurent, P.-J.: Approximation et Optimisation. Hermann, Paris (1972)zbMATHGoogle Scholar
  218. 218.
    Lax, P.D., Milgram, A.N.: Parabolic equations. In: Contributions to the Theory of Partial Differential Equations, pp. 167–190. Princeton University Press, Princeton (1954)Google Scholar
  219. 219.
    Lazer, A.C., Solimini, S.: Nontrivial solutions of operator equations and Morse indices of critical points of min-max type. Nonlin. Anal. 12, 761–775 (1988)MathSciNetzbMATHGoogle Scholar
  220. 220.
    Lê, A.: Eigenvalue problems for the p-Laplacian. Nonlin. Anal. 64, 1057–1099 (2006)zbMATHGoogle Scholar
  221. 221.
    Lebourg, G.: Valeur moyenne pour gradient généralisé. C. R. Acad. Sci. Paris Sér. A 281, 795–797 (1975)MathSciNetzbMATHGoogle Scholar
  222. 222.
    Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51(3), 45–78 (1934)MathSciNetGoogle Scholar
  223. 223.
    Li, C.: The existence of infinitely many solutions of a class of nonlinear elliptic equations with Neumann boundary condition for both resonance and oscillation problems. Nonlin. Anal. 54, 431–443 (2003)zbMATHGoogle Scholar
  224. 224.
    Li, S.J., Willem, M.: Applications of local linking to critical point theory. J. Math. Anal. Appl. 189, 6–32 (1995)MathSciNetzbMATHGoogle Scholar
  225. 225.
    Li, G., Yang, C.: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition. Nonlin. Anal. 72, 4602–4613 (2010)zbMATHGoogle Scholar
  226. 226.
    Li, S., Wu, S., Zhou, H.-S.: Solutions to semilinear elliptic problems with combined nonlinearities. J. Differ. Equat. 185, 200–224 (2002)MathSciNetzbMATHGoogle Scholar
  227. 227.
    Liapounoff, A.: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 9(2), 203–474 (1907)MathSciNetzbMATHGoogle Scholar
  228. 228.
    Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlin. Anal. 12, 1203–1219 (1988)MathSciNetzbMATHGoogle Scholar
  229. 229.
    Lindqvist, P.: On the equation \(\mathrm{div}\,(\vert \nabla {u\vert}^{p-2}\nabla u) +\lambda \vert {u\vert}^{p-2}u = 0\). Proc. Amer. Math. Soc. 109, 157–164 (1990)MathSciNetzbMATHGoogle Scholar
  230. 230.
    Ling, J.: Unique continuation for a class of degenerate elliptic operators. J. Math. Anal. Appl. 168, 511–517 (1992)MathSciNetzbMATHGoogle Scholar
  231. 231.
    Liu, J.: The Morse index of a saddle point. Syst. Sci. Math. Sci. 2, 32–39 (1989)zbMATHGoogle Scholar
  232. 232.
    Liu, J., Li, S.: An existence theorem for multiple critical points and its application. Kexue Tongbao (Chinese) 29, 1025–1027 (1984)MathSciNetGoogle Scholar
  233. 233.
    Liu, Z., Motreanu, D.: A class of variational-hemivariational inequalities of elliptic type. Nonlinearity 23, 1741–1752 (2010)MathSciNetzbMATHGoogle Scholar
  234. 234.
    Liu, J., Su, J.: Remarks on multiple nontrivial solutions for quasi-linear resonant problems. J. Math. Anal. Appl. 258 209–222 (2001)MathSciNetzbMATHGoogle Scholar
  235. 235.
    Liu, Z., Wang, Z.-Q.: Sign-changing solutions of nonlinear elliptic equations. Front. Math. China 3, 221–238 (2008)MathSciNetzbMATHGoogle Scholar
  236. 236.
    Liu, J., Wu, S.: Calculating critical groups of solutions for elliptic problem with jumping nonlinearity. Nonlin. Anal. 49,779–797 (2002)zbMATHGoogle Scholar
  237. 237.
    Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)zbMATHGoogle Scholar
  238. 238.
    Lucia, M., Prashanth, S.: Strong comparison principle for solutions of quasilinear equations. Proc. Amer. Math. Soc. 132, 1005–1011 (2004)MathSciNetzbMATHGoogle Scholar
  239. 239.
    Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differ. Equat. 145, 367–393 (1998)zbMATHGoogle Scholar
  240. 240.
    Manes, A., Micheletti, A.M.: Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 7(4), 285–301 (1973)MathSciNetzbMATHGoogle Scholar
  241. 241.
    Marano, S.A., Motreanu, D.: Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian. J. Differ. Equat. 182, 108–120 (2002)MathSciNetzbMATHGoogle Scholar
  242. 242.
    Marano, S.A., Motreanu, D.: A deformation theorem and some critical point results for non-differentiable functions. Topol. Methods Nonlin. Anal. 22, 139–158 (2003)MathSciNetzbMATHGoogle Scholar
  243. 243.
    Marano, S.A., Motreanu, D.: Critical points of non-smooth functions with a weak compactness condition. J. Math. Anal. Appl. 358, 189–201 (2009)MathSciNetzbMATHGoogle Scholar
  244. 244.
    Marano, S.A., Papageorgiou, N.S.: Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems. Nonlin. Anal. 77, 118–129 (2013)MathSciNetzbMATHGoogle Scholar
  245. 245.
    Marcus, M., Mizel, V.J.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45, 294–320 (1972)MathSciNetzbMATHGoogle Scholar
  246. 246.
    Marcus, M., Mizel, V.J.: Continuity of certain Nemitsky operators on Sobolev spaces and the chain rule. J. Anal. Math. 28, 303–334 (1975)MathSciNetzbMATHGoogle Scholar
  247. 247.
    Marcus, M., Mizel, V.J.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33, 217–229 (1979)MathSciNetzbMATHGoogle Scholar
  248. 248.
    Margulies, C.A., Margulies, W.: An example of the Fučik spectrum. Nonlin. Anal. 29, 1373–1378 (1997)MathSciNetzbMATHGoogle Scholar
  249. 249.
    Marino, A., Prodi, G.: Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. 11(4, suppl. 3), 1–32 (1975)Google Scholar
  250. 250.
    Martio, O.: Counterexamples for unique continuation. Manuscripta Math. 60, 21–47 (1988)MathSciNetzbMATHGoogle Scholar
  251. 251.
    Mawhin, J.: Semicoercive monotone variational problems. Acad. Roy. Belg. Bull. Cl. Sci. 73(5), 118–130 (1987)MathSciNetzbMATHGoogle Scholar
  252. 252.
    Mawhin, J.: Forced second order conservative systems with periodic nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 6, 415–434 (1989)MathSciNetzbMATHGoogle Scholar
  253. 253.
    Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. Springer, New York (1989)zbMATHGoogle Scholar
  254. 254.
    Mawhin, J., Ward, J.R., Willem, M.: Variational methods and semilinear elliptic equations. Arch. Rational Mech. Anal. 95, 269–277 (1986)MathSciNetzbMATHGoogle Scholar
  255. 255.
    Maz’ja, V.G.: Sobolev Spaces. Springer, Berlin (1985)zbMATHGoogle Scholar
  256. 256.
    Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)zbMATHGoogle Scholar
  257. 257.
    Meyers, N.G., Serrin, J.: H = W. Proc. Nat. Acad. Sci. USA 51, 1055–1056 (1964)MathSciNetzbMATHGoogle Scholar
  258. 258.
    Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)MathSciNetzbMATHGoogle Scholar
  259. 259.
    Minty, G.J.: On a “monotonicity” method for the solution of non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. USA 50, 1038–1041 (1963)MathSciNetzbMATHGoogle Scholar
  260. 260.
    Miyagaki, O.H., Souto, M.A.S.: Superlinear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equat. 245, 3628–3638 (2008)MathSciNetzbMATHGoogle Scholar
  261. 261.
    Miyajima, S., Motreanu, D., Tanaka, M.: Multiple existence results of solutions for the Neumann problems via super- and sub-solutions. J. Funct. Anal. 262, 1921–1953 (2012)MathSciNetzbMATHGoogle Scholar
  262. 262.
    Montenegro, M.: Strong maximum principles for supersolutions of quasilinear elliptic equations. Nonlin. Anal. 37, 431–448 (1999)MathSciNetzbMATHGoogle Scholar
  263. 263.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)Google Scholar
  264. 264.
    Moroz, V.: Solutions of superlinear at zero elliptic equations via Morse theory. Topol. Methods Nonlin. Anal. 10, 387–397 (1997)MathSciNetzbMATHGoogle Scholar
  265. 265.
    Morrey, C.B.: Functions of several variables and absolute continuity II. Duke Math. J. 6, 187–215 (1940)MathSciNetGoogle Scholar
  266. 266.
    Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, New York (1966)zbMATHGoogle Scholar
  267. 267.
    Morse, M.: Relations between the critical points of a real function of n independent variables. Trans. Amer. Math. Soc. 27, 345–396 (1925)MathSciNetzbMATHGoogle Scholar
  268. 268.
    Morse, M.: The Calculus of Variations in the Large, vol. 18, p. IX+368. American Mathematical Society Colloquium Publications, New York (1934)Google Scholar
  269. 269.
    Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13, 457–468 (1960)MathSciNetzbMATHGoogle Scholar
  270. 270.
    Motreanu, V.V.: Multiplicity of solutions for variable exponent Dirichlet problem with concave term. Discrete Contin. Dyn. Syst. 5, 845–855 (2012)MathSciNetzbMATHGoogle Scholar
  271. 271.
    Motreanu, D.: Three solutions with precise sign properties for systems of quasilinear elliptic equations. Discrete Contin. Dyn. Syst. Ser. S 5, 831–843 (2012)MathSciNetzbMATHGoogle Scholar
  272. 272.
    Motreanu, D., Motreanu, V.V.: Coerciveness property for a class of non-smooth functionals. Z. Anal. Anwend. 19, 1087–1093 (2000)MathSciNetzbMATHGoogle Scholar
  273. 273.
    Motreanu, D., Motreanu, V.V.: Nonsmooth variational problems in the limit case and duality. J. Global Optim. 29, 439–453 (2004)MathSciNetzbMATHGoogle Scholar
  274. 274.
    Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  275. 275.
    Motreanu, D., Papageorgiou, N.S.: Existence and multiplicity of solutions for Neumann problems. J. Differ. Equat. 232, 1–35 (2007)MathSciNetzbMATHGoogle Scholar
  276. 276.
    Motreanu, D., Papageorgiou, N.S.: Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator. Proc. Am. Math. Soc. 139, 3527–3535 (2011)MathSciNetzbMATHGoogle Scholar
  277. 277.
    Motreanu, D., Perera, K.: Multiple nontrivial solutions of Neumann p-Laplacian systems. Topol. Methods Nonlin. Anal. 34, 41–48 (2009)MathSciNetzbMATHGoogle Scholar
  278. 278.
    Motreanu, D., Rădulescu, V.: Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Kluwer Academic Publishers, Dordrecht (2003)zbMATHGoogle Scholar
  279. 279.
    Motreanu, D., Tanaka, M.: Sign-changing and constant-sign solutions for p-Laplacian problems with jumping nonlinearities. J. Differ. Equat. 249, 3352–3376 (2010)MathSciNetzbMATHGoogle Scholar
  280. 280.
    Motreanu, D., Tanaka, M.: Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under the Neumann boundary condition. Calc. Var. Partial Differ. Equat. 43, 231–264 (2012)MathSciNetzbMATHGoogle Scholar
  281. 281.
    Motreanu, D., Tanaka, M.: Generalized eigenvalue problems of nonhomogeneous elliptic operators and their application. Pacific J. Math. 265, 151–184 (2013)MathSciNetzbMATHGoogle Scholar
  282. 282.
    Motreanu, D., Winkert, P.: On the Fučik spectrum for the p-Laplacian with Robin boundary condition. Nonlin. Anal. 74, 4671–4681 (2011)MathSciNetzbMATHGoogle Scholar
  283. 283.
    Motreanu, D., Winkert, P.: The Fučík spectrum for the negative p-Laplacian with different boundary conditions. In: Nonlinear Analysis, pp. 471–485. Springer, New York (2012)Google Scholar
  284. 284.
    Motreanu, D., Zhang, Z.: Constant sign and sign changing solutions for systems of quasilinear elliptic equations. Set-Valued Var. Anal. 19, 255–269 (2011)MathSciNetzbMATHGoogle Scholar
  285. 285.
    Motreanu, D., Motreanu, V.V., Paşca, D.: A version of Zhong’s coercivity result for a general class of nonsmooth functionals. Abstr. Appl. Anal. 7, 601–612 (2002)MathSciNetzbMATHGoogle Scholar
  286. 286.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Periodic solutions for nonautonomous systems with nonsmooth quadratic or superquadratic potential. Topol. Methods Nonlin. Anal. 24, 269–296 (2004)MathSciNetzbMATHGoogle Scholar
  287. 287.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Existence of solutions for strongly nonlinear elliptic differential inclusions with unilateral constraints. Adv. Differ. Equat. 10, 961–982 (2005)MathSciNetzbMATHGoogle Scholar
  288. 288.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Multiple nontrivial solutions for nonlinear eigenvalue problems. Proc. Amer. Math. Soc. 135, 3649–3658 (2007)MathSciNetzbMATHGoogle Scholar
  289. 289.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: A unified approach for multiple constant sign and nodal solutions. Adv. Differ. Equat. 12, 1363–1392 (2007)MathSciNetzbMATHGoogle Scholar
  290. 290.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Two nontrivial solutions for periodic systems with indefinite linear part. Discrete Contin. Dyn. Syst. 19, 197–210 (2007)MathSciNetzbMATHGoogle Scholar
  291. 291.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations. Manuscripta Math. 124, 507–531 (2007)MathSciNetzbMATHGoogle Scholar
  292. 292.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: A multiplicity theorem for problems with the p-Laplacian. Nonlin. Anal. 68, 1016–1027 (2008)MathSciNetzbMATHGoogle Scholar
  293. 293.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with p-Laplacian. Trans. Amer. Math. Soc. 360, 2527–2545 (2008)MathSciNetzbMATHGoogle Scholar
  294. 294.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Nonlinear Neumann problems near resonance. Indiana Univ. Math. J. 58, 1257–1279 (2009)MathSciNetzbMATHGoogle Scholar
  295. 295.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Multiple solutions for Dirichlet problems which are superlinear at + and (sub-)linear at −. Commun. Appl. Anal. 13, 341–357 (2009)Google Scholar
  296. 296.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Multiple solutions for resonant nonlinear periodic equations. NoDEA - Nonlin. Differ. Equat. Appl. 17, 535–557 (2010)MathSciNetzbMATHGoogle Scholar
  297. 297.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Existence and multiplicity of solutions for asympotically linear, noncoercive elliptic equations. Monatsh. Math. 159, 59–80 (2010)MathSciNetzbMATHGoogle Scholar
  298. 298.
    Motreanu, D., Motreanu, V.V., Turinici, M.: Coerciveness property for conical nonsmooth functionals. J. Optim. Theory Appl. 145, 148–163 (2010)MathSciNetzbMATHGoogle Scholar
  299. 299.
    Motreanu, D., O’Regan, D., Papageorgiou, N.S.: A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems. Commun. Pure Appl. Anal. 10, 1791–1816 (2011)MathSciNetzbMATHGoogle Scholar
  300. 300.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Commun. Pure Appl. Anal. 10, 1401–1414 (2011)MathSciNetzbMATHGoogle Scholar
  301. 301.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10(5), 729–755 (2011)MathSciNetzbMATHGoogle Scholar
  302. 302.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: On p-Laplace equations with concave terms and asymmetric perturbations. Proc. Roy. Soc. Edinb. Sect. A 141, 171–192 (2011)MathSciNetzbMATHGoogle Scholar
  303. 303.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: On resonant Neumann problems. Math. Ann. 354, 1117–1145 (2012)MathSciNetzbMATHGoogle Scholar
  304. 304.
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Existence and nonexistence of positive solutions for parametric Neumann problems with p-Laplacian. Tohoku Math. J. (to appear)Google Scholar
  305. 305.
    Mugnai, D., Papageorgiou, N.S.: Resonant nonlinear Neumann problems with indefinite weight. Ann. Sc. Norm. Super. Pisa Cl. Sci. 11(5), 729–788 (2012)MathSciNetzbMATHGoogle Scholar
  306. 306.
    Nagumo, M.: A theory of degree of mapping based on infinitesimal analysis. Amer. J. Math. 73, 485–496 (1951)MathSciNetzbMATHGoogle Scholar
  307. 307.
    Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Dekker Inc., New York (1995)Google Scholar
  308. 308.
    Ni, W.-M., Wang, X.: On the first positive Neumann eigenvalue. Discrete Contin. Dyn. Syst. 17, 1–19 (2007)MathSciNetzbMATHGoogle Scholar
  309. 309.
    Nirenberg, L.: Topics in Nonlinear Functional Analysis. New York University Courant Institute of Mathematical Sciences, New York (2001)zbMATHGoogle Scholar
  310. 310.
    Njoku, F.I., Zanolin, F.: Positive solutions for two-point BVPs: existence and multiplicity results. Nonlin. Anal. 13, 1329–1338 (1989)MathSciNetzbMATHGoogle Scholar
  311. 311.
    Nussbaum, R.D.: The fixed point index for local condensing maps. Ann. Mat. Pura Appl. 89(4), 217–258 (1971)MathSciNetzbMATHGoogle Scholar
  312. 312.
    Ôtani, M.: Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal. 76, 140–159 (1988)MathSciNetzbMATHGoogle Scholar
  313. 313.
    Palais, R.S.: Morse theory on Hilbert manifolds. Topology 2, 299–340 (1963)MathSciNetzbMATHGoogle Scholar
  314. 314.
    Palais, R.S.: Lusternik-Schnirelman theory on Banach manifolds. Topology 5, 115–132 (1966)MathSciNetzbMATHGoogle Scholar
  315. 315.
    Palais, R.S.: The principle of symmetric criticality. Comm. Math. Phys. 69, 19–30 (1979)MathSciNetzbMATHGoogle Scholar
  316. 316.
    Palais, R.S., Smale, S.: A generalized Morse theory. Bull. Amer. Math. Soc. 70, 165–172 (1964)MathSciNetzbMATHGoogle Scholar
  317. 317.
    Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin (1993)zbMATHGoogle Scholar
  318. 318.
    Papageorgiou, N.S., Kyritsi-Yiallourou, S.T.: Handbook of Applied Analysis. Springer, New York (2009)zbMATHGoogle Scholar
  319. 319.
    Papageorgiou, E.H., Papageorgiou, N.S.: A multiplicity theorem for problems with the p-Laplacian. J. Funct. Anal. 244, 63–77 (2007)MathSciNetzbMATHGoogle Scholar
  320. 320.
    Papageorgiou, N.S., Papalini, F.: On the existence of three nontrivial solutions for periodic problems driven by the scalar p-Laplacian. Adv. Nonlin. Stud. 11, 455–471 (2011)MathSciNetzbMATHGoogle Scholar
  321. 321.
    Papageorgiou, N.S., Papalini, F.: Multiple solutions for nonlinear periodic systems with combined nonlinearities and a nonsmooth potential. J. Nonlin. Convex Anal. 13, 681–693 (2012)MathSciNetzbMATHGoogle Scholar
  322. 322.
    Papageorgiou, N.S., Staicu, V.: Multiple nontrivial solutions for doubly resonant periodic problems. Canad. Math. Bull. 53, 347–359 (2010)MathSciNetzbMATHGoogle Scholar
  323. 323.
    Papageorgiou, N.S., Rocha, E.M., Staicu, V.: A multiplicity theorem for hemivariational inequalities with a p-Laplacian-like differential operator. Nonlin. Anal. 69, 1150–1163 (2008)MathSciNetzbMATHGoogle Scholar
  324. 324.
    Pascali, D., Sburlan, S.: Nonlinear Mappings of Monotone Type. Martinus Nijhoff Publishers, The Hague (1978)zbMATHGoogle Scholar
  325. 325.
    Pauli, W.: Theory of Relativity. Pergamon, New York (1958)zbMATHGoogle Scholar
  326. 326.
    Perera, K.: Homological local linking. Abstr. Appl. Anal. 3, 181–189 (1998)MathSciNetzbMATHGoogle Scholar
  327. 327.
    Perera, K.: Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlin. Anal. 21, 301–309 (2003)MathSciNetzbMATHGoogle Scholar
  328. 328.
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364. Springer, Berlin (1993)Google Scholar
  329. 329.
    Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Amer. Math. Soc. 174, 822 (2005)MathSciNetGoogle Scholar
  330. 330.
    Pucci, P., Serrin, J.: A mountain pass theorem. J. Differ. Equat. 60, 142–149 (1985)MathSciNetzbMATHGoogle Scholar
  331. 331.
    Pucci, P., Serrin, J.: The structure of the critical set in the mountain pass theorem. Trans. Amer. Math. Soc. 299, 115–132 (1987)MathSciNetzbMATHGoogle Scholar
  332. 332.
    Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser, Basel (2007)zbMATHGoogle Scholar
  333. 333.
    Qian, A.: Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem. Bound. Value Probl. 2005, 329–335 (2005)zbMATHGoogle Scholar
  334. 334.
    Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)MathSciNetzbMATHGoogle Scholar
  335. 335.
    Rabinowitz, P.H.: A note on topological degree for potential operators. J. Math. Anal. Appl. 51, 483–492 (1975)MathSciNetzbMATHGoogle Scholar
  336. 336.
    Rabinowitz, P.H.: Some minimax theorems and applications to nonlinear partial differential equations. In: Nonlinear Analysis (collection of papers in honor of Erich H. Rothe), pp. 161–177. Academic, New York (1978)Google Scholar
  337. 337.
    Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 31, 157–184 (1978)MathSciNetGoogle Scholar
  338. 338.
    Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society, Washington (1986)Google Scholar
  339. 339.
    Rellich, F.: Ein Satz über mittlere Konvergenz. Nachrichten Göttingen 1930, 30–35 (1930)zbMATHGoogle Scholar
  340. 340.
    Ricceri, B.: Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian. Bull. London Math. Soc. 33, 331–340 (2001)MathSciNetzbMATHGoogle Scholar
  341. 341.
    Riesz, F.: Über lineare Funktionalgleichungen. Acta Math. 41, 71–98 (1916)MathSciNetzbMATHGoogle Scholar
  342. 342.
    Roberts, A.W., Varberg, D.E.: Convex Functions. Academic, New York (1973)zbMATHGoogle Scholar
  343. 343.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  344. 344.
    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149, 75–88 (1970)MathSciNetzbMATHGoogle Scholar
  345. 345.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)MathSciNetzbMATHGoogle Scholar
  346. 346.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)zbMATHGoogle Scholar
  347. 347.
    Roselli, P., Sciunzi, B.: A strong comparison principle for the p-Laplacian. Proc. Amer. Math. Soc. 135, 3217–3224 (2007)MathSciNetzbMATHGoogle Scholar
  348. 348.
    Rothe, E.H.: Morse theory in Hilbert space. Rocky Mountain J. Math. 3, 251–274 (1973)MathSciNetzbMATHGoogle Scholar
  349. 349.
    Rynne, B.P.: Spectral properties of p-Laplacian problems with Neumann and mixed-type multi-point boundary conditions. Nonlin. Anal. 74, 1471–1484 (2011)MathSciNetzbMATHGoogle Scholar
  350. 350.
    Schauder, J.: Der Fixpunktsatz in Funktionalräumen. Studia 2, 171–180 (1930)zbMATHGoogle Scholar
  351. 351.
    Schechter, M.: The Fučík spectrum. Indiana Univ. Math. J. 43, 1139–1157 (1994)MathSciNetzbMATHGoogle Scholar
  352. 352.
    Schechter, M.: Infinite-dimensional linking. Duke Math. J. 94, 573–595 (1998)MathSciNetzbMATHGoogle Scholar
  353. 353.
    Schechter, M.: Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999)zbMATHGoogle Scholar
  354. 354.
    Schechter, M.: Principles of Functional Analysis. American Mathematical Society, Providence (2002)Google Scholar
  355. 355.
    Schechter, M., Zou, W.: Superlinear problems. Pacific J. Math. 214, 145–160 (2004)MathSciNetzbMATHGoogle Scholar
  356. 356.
    Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen III, Teil: Über die Auflösung der nichtlinearen Integralgleichungen und die Verzweigung ihrer Lösungen. Math. Ann. 65, 370–399 (1908)zbMATHGoogle Scholar
  357. 357.
    Schwartz, L.: Théorie des Distributions: Tome I. Hermann and Cie., Paris (1950)zbMATHGoogle Scholar
  358. 358.
    Schwartz, L.: Théorie des Distributions: Tome II. Hermann and Cie., Paris (1951)zbMATHGoogle Scholar
  359. 359.
    Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)MathSciNetzbMATHGoogle Scholar
  360. 360.
    Skrypnik, I.V.: Nonlinear Elliptic Boundary Value Problems. Teubner Verlagsgesellschaft, Leipzig (1986)zbMATHGoogle Scholar
  361. 361.
    Silva, E.A., Teixeira, M.A.: A version of Rolle’s theorem and applications. Bol. Soc. Brasil. Mat. (N.S.) 29, 301–327 (1998)Google Scholar
  362. 362.
    Smale, S.: Morse theory and a non-linear generalization of the Dirichlet problem. Ann. of Math. 80(2), 382–396 (1964)MathSciNetzbMATHGoogle Scholar
  363. 363.
    Sobolev, S.L.: Applications of Functional Analysis in Mathematical Physics. Amer. Math. Soc., Providence (1963)zbMATHGoogle Scholar
  364. 364.
    Sobolev, S.L.: On a theorem of functional analysis. Amer. Math. Soc. Transl. 34, 39–68 (1963)MathSciNetzbMATHGoogle Scholar
  365. 365.
    Spanier, E.H.: Algebraic Topology. McGraw-Hill Book Co., New York (1966)zbMATHGoogle Scholar
  366. 366.
    Stampacchia, G.: Équations Elliptiques du Second Ordre à Coefficients Discontinus. Les Presses de l’Université de Montréal, Montreal (1966)zbMATHGoogle Scholar
  367. 367.
    Struwe, M.: Variational Methods. Springer, Berlin (1996)zbMATHGoogle Scholar
  368. 368.
    Su, J., Zhao, L.: An elliptic resonance problem with multiple solutions. J. Math. Anal. Appl. 319, 604–616 (2006)MathSciNetzbMATHGoogle Scholar
  369. 369.
    Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77–109 (1986)MathSciNetzbMATHGoogle Scholar
  370. 370.
    Tang, C.-L.: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proc. Amer. Math. Soc. 126, 3263–3270 (1998)MathSciNetzbMATHGoogle Scholar
  371. 371.
    Tang, C.-L., Wu, X.-P.: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259, 386–397 (2001)MathSciNetzbMATHGoogle Scholar
  372. 372.
    Tang, C.-L., Wu, X.-P.: Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems. J. Math. Anal. Appl. 275, 870–882 (2002)MathSciNetzbMATHGoogle Scholar
  373. 373.
    Tang, C.-L., Wu, X.-P.: Existence and multiplicity for solutions of Neumann problem for semilinear elliptic equations. J. Math. Anal. Appl. 288, 660–670 (2003)MathSciNetzbMATHGoogle Scholar
  374. 374.
    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)zbMATHGoogle Scholar
  375. 375.
    Thews, K.: Nontrivial solutions of elliptic equations at resonance. Proc. Roy. Soc. Edinb. Sect. A 85, 119–129 (1980)MathSciNetzbMATHGoogle Scholar
  376. 376.
    Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equat. 51, 126–150 (1984)MathSciNetzbMATHGoogle Scholar
  377. 377.
    Troyanski, S.L.: On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math. 37, 173–180 (1971)MathSciNetzbMATHGoogle Scholar
  378. 378.
    Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721–747 (1967)MathSciNetzbMATHGoogle Scholar
  379. 379.
    Vázquez, J. L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)MathSciNetzbMATHGoogle Scholar
  380. 380.
    Wang, J.: The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer. Math. Soc. 125, 2275–2283 (1997)MathSciNetzbMATHGoogle Scholar
  381. 381.
    Weyl, H.: Space, Time, Matter. Dover Publications, New York (1951)zbMATHGoogle Scholar
  382. 382.
    Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)zbMATHGoogle Scholar
  383. 383.
    Wu, X., Tan, K.-K.: On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations. Nonlin. Anal. 65, 1334–1347 (2006)MathSciNetzbMATHGoogle Scholar
  384. 384.
    Yang, C.-T.: On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson. I. Ann. Math. 60(2), 262–282 (1954)zbMATHGoogle Scholar
  385. 385.
    Yang, X.: Multiple periodic solutions of a class of p-Laplacian. J. Math. Anal. Appl. 314, 17–29 (2006)MathSciNetzbMATHGoogle Scholar
  386. 386.
    Zeidler, E.: The Ljusternik-Schnirelman theory for indefinite and not necessarily odd nonlinear operators and its applications. Nonlin. Anal. 4, 451–489 (1980)MathSciNetzbMATHGoogle Scholar
  387. 387.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization. Springer, New York (1985)zbMATHGoogle Scholar
  388. 388.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer, New York (1990)zbMATHGoogle Scholar
  389. 389.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer-Verlag, New York (1990)zbMATHGoogle Scholar
  390. 390.
    Zhang, M.: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials. J. London Math. Soc. 64(2), 125–143 (2001)MathSciNetzbMATHGoogle Scholar
  391. 391.
    Zhang, Q.: A strong maximum principle for differential equations with nonstandard p(x)-growth conditions. J. Math. Anal. Appl. 312, 24–32 (2005)MathSciNetzbMATHGoogle Scholar
  392. 392.
    Zhang, Z., Li, S.: On sign-changing and multiple solutions of the p-Laplacian. J. Funct. Anal. 197, 447–468 (2003)MathSciNetzbMATHGoogle Scholar
  393. 393.
    Zhang, Q., Li, G.: On a class of second order differential inclusions driven by the scalar p-Laplacian. Nonlin. Anal. 72, 151–163 (2010)zbMATHGoogle Scholar
  394. 394.
    Zhang, Z., Chen, J., Li, S.: Construction of pseudo-gradient vector field and sign-changing multiple solutions involving p-Laplacian. J. Differ. Equat. 201, 287–303 (2004)MathSciNetzbMATHGoogle Scholar
  395. 395.
    Zhong, C.-K.: A generalization of Ekeland’s variational principle and application to the study of the relation between the weak P.S. condition and coercivity. Nonlin. Anal. 29, 1421–1431 (1997)Google Scholar
  396. 396.
    Ziemer, W.P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Springer, New York (1989)zbMATHGoogle Scholar
  397. 397.
    Zou, W.: Variant fountain theorems and their applications. Manuscripta Math. 104, 343–358 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Dumitru Motreanu
    • 1
  • Viorica Venera Motreanu
    • 2
  • Nikolaos Papageorgiou
    • 3
  1. 1.Department of MathematicsUniversity of PerpignanPerpignanFrance
  2. 2.Department of MathematicsBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations