Abstract
Various techniques of materials characterization are also crucial in order to “see” what is happening during and after the growth, as well as to be able to analyze the properties of the resulting structure. In this chapter, we provide a brief overview of the more commonly used thin film characterization methods based on incident electrons, photons, ions, and scanning probe techniques. These techniques can be used to determine the crystalline structure, and electronic and chemical characteristics of epitaxial oxide systems. In most cases, a combination of one or more of these techniques is performed in order to gain a more complete picture of the sample being measured. The chapter is primarily designed to introduce thin film growth practitioners to the most common characterization methods available and what types of information can be obtained from them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
H. Czichos, T. Saito, L.R. Smith, Springer Handbook of Materials Measurement Methods (Springer, Berlin, 2006)
P.M. Martin, Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology (Elsevier, Amsterdam, 2010)
D.P. Woodruff, T.A. Delchar, Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1994)
K. Siegbahn, Science 217, 111 (1982)
J.F. Moulder, J. Chastain, R.C. King, in Handbook of X-ray Photoelectron Spectroscopy, ed. by G.E. Muilenberg (Physical Electronics, Eden Prairie, MN, 1979)
M.P. Seah, W.D. Dench, Surf. Interface Anal. 1, 2 (1979)
S. Tanuma, C.J. Powell, D.R. Penn, Surf. Sci. 192, L849 (1987)
F.J. Himpsel, Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv. Phys. 32, 1 (1983)
Division of Surface Science, Institut National de la Recherche Scientifique, Online ARXPS tutorial, http://goliath.emt.inrs.ca/surfsci/arxps/
M. Cardona, L. Ley, in Photoemission in Solids I, ed. by M. Cardona, L. Ley, (Springer, New York, 1978), pp. 1–104
R.C. Hatch, K.D. Fredrickson, M. Choi, C. Lin, H. Seo, A. Posadas, A.A. Demkov, J. Appl. Phys. 114, 103810 (2013)
VG Scienta, VUV 5000 Data Sheet version 4.1, http://www.vgscienta.com/_resources/File/VUV5000data sheet v4.1web.pdf
M. Kudo, in Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J.T. Grant (IM Publications, Chichester, 2003)
D. Briggs, M.P. Seah, Practical Surface Analysis: By Auger and X-ray Photoelectron Spectroscopy (Wiley, Chichester, 1983)
U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-ray Scattering: From Thin Films to Lateral Nanostructures (Springer, New York, 2004)
K.R. Balasubramanian, Growth and structural investigations of epitaxial hexagonal YMnO3 thin films deposited on wurtzite GaN(001) substrates. Thin Solid Films 515, 1807 (2006). doi:10.1016/j.tsf.2006.07.001
D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Plenum, New York, 1996)
J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis (Kluwer, New York, 2003)
F.M. Pontes, E.R. Leite, E.J.H. Lee, E. Longo, J.A. Varela, Dielectric properties and microstructure of SrTiO3/BaTiO3 multilayer thin films prepared by a chemical route. Thin Solid Films 385, 260 (2001)
S.J. Pennycook, M. Varela, C.J.D. Hetherington, A.I. Kirkland, MRS Bull. 31, 36 (2006)
D.A. Muller et al., Science 319, 1073 (2008)
V.M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction: Experiment, Theory, and Surface Structure Determination (Springer, Berlin, 1986)
A. Ichimiya, P.I. Cohen, Reflection High-Energy Electron Diffraction (Cambridge University Press, Cambridge, 2010)
J.H. Haeni, C.D. Theis, D.G. Schlom, RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385 (2000)
I. Bozovic, J.N. Eckstein, Analysis of growing films of complex oxides by RHEED. MRS Bull. 20, 32 (1995)
S.A. Chambers, Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39, 105 (2000)
H. Guo et al., Structural and optical properties of BaTiO3 ultrathin films. Europhys. Lett. 73, 110 (2006)
A. Ohkubo et al., Combinatorial synthesis and optical characterization of alloy and superlattice films based on SrTiO3 and LaAlO3. Appl. Surf. Sci. 252, 2488 (2006)
D. Kan et al., Blue light emission at room temperature from Ar+-irradiated SrTiO3. Nat. Mater. 4, 816 (2005)
I.R. Lewis, H.G.M. Edwards, Handbook of Raman Spectroscopy from the Research Laboratory to the Process Line (Marcel Dekker, New York, 2001)
R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972)
J.B. Theeten, D.E. Aspnes, Ellipsometry in thin film analysis. Annu. Rev. Mater. Sci. 11, 97 (1981)
H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley, New York, 1999)
Z. Sobiesierski, Photoluminescence spectroscopy, in Epioptics: Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces, ed. by J.F. McGilp, D.L. Weaire, C.H. Patterson (Springer, Berlin, 1995), pp. 133–162
T. Nakamura, Appl. Surf. Sci. 576, 130–132 (1998)
L.V. Goncharova et al., J. Appl. Phys. 100, 014912 (2006)
V. Shutthanandan et al., Appl. Phys. Lett. 80, 1803 (2002)
J.W. Rabalais, Principles and Applications of Ion Scattering Spectrometry: Surface Chemical and Structural Analysis (Wiley-Interscience, Hoboken, NJ, 2003)
T. Gustafsson, Medium energy ion scattering for near surface structure and depth profiling, in Ion Beams in Nanoscience and Technology, ed. by R. Hellborg, H.J. Whitlow, Y. Zhang (Springer, Heidelberg, 2009), pp. 153–167
L.C. Feldman, Rutherford backscattering and nuclear reaction analysis, in Ion Spectroscopies for Surface Analysis, ed. by A.W. Czanderna, D.M. Hercules (Plenum, New York, 1991), pp. 311–362
H.-N. Tsai, Y.-C. Liang, H.-Y. Lee, Characteristics of sputter-deposited BaTiO3/SrTiO3 artificial superlattice films on an LaNiO3-coated SrTiO3 substrate. J. Cryst. Growth 284, 65 (2005)
J.C. Vickerman, A. Brown, N.M. Reed, Secondary Ion Mass Spectrometry: Principles and Applications (Clarendon, Oxford, 1989)
D.A. Bonnell, Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications (Wiley-VCH, New York, 1993)
J.H. He, G.H. Zhang, J.D. Guo, Q.L. Guo, K.H. Wu, Atomic structure of Sr-induced reconstructions on the Si(100) surface. J. Appl. Phys. 109, 083522 (2011)
P. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, 2010)
A. Gruverman, S.V. Kalinin, Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics, in Frontiers of Ferroelectricity, ed. by H.L.W. Chan, S.B. Lang (Springer, New York, 2007), pp. 107–116
E. Meyer, H.J. Hug, MFM and related techniques, in Scanning Probe Microscopy: The Lab on a Tip, ed. by E. Meyer, H.J. Hug, R. Bennewitz (Springer, Berlin, 2004), pp. 97–125
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2014 The Author(s)
About this chapter
Cite this chapter
Demkov, A.A., Posadas, A.B. (2014). Thin Oxide Film Characterization Methods. In: Integration of Functional Oxides with Semiconductors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9320-4_5
Download citation
DOI: https://doi.org/10.1007/978-1-4614-9320-4_5
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-9319-8
Online ISBN: 978-1-4614-9320-4
eBook Packages: EngineeringEngineering (R0)