Skip to main content

Thin Oxide Film Characterization Methods

  • Chapter
  • First Online:
Integration of Functional Oxides with Semiconductors

Abstract

Various techniques of materials characterization are also crucial in order to “see” what is happening during and after the growth, as well as to be able to analyze the properties of the resulting structure. In this chapter, we provide a brief overview of the more commonly used thin film characterization methods based on incident electrons, photons, ions, and scanning probe techniques. These techniques can be used to determine the crystalline structure, and electronic and chemical characteristics of epitaxial oxide systems. In most cases, a combination of one or more of these techniques is performed in order to gain a more complete picture of the sample being measured. The chapter is primarily designed to introduce thin film growth practitioners to the most common characterization methods available and what types of information can be obtained from them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Czichos, T. Saito, L.R. Smith, Springer Handbook of Materials Measurement Methods (Springer, Berlin, 2006)

    Book  Google Scholar 

  2. P.M. Martin, Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology (Elsevier, Amsterdam, 2010)

    Google Scholar 

  3. D.P. Woodruff, T.A. Delchar, Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  4. K. Siegbahn, Science 217, 111 (1982)

    Article  Google Scholar 

  5. J.F. Moulder, J. Chastain, R.C. King, in Handbook of X-ray Photoelectron Spectroscopy, ed. by G.E. Muilenberg (Physical Electronics, Eden Prairie, MN, 1979)

    Google Scholar 

  6. M.P. Seah, W.D. Dench, Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  7. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Sci. 192, L849 (1987)

    Article  Google Scholar 

  8. F.J. Himpsel, Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv. Phys. 32, 1 (1983)

    Article  Google Scholar 

  9. Division of Surface Science, Institut National de la Recherche Scientifique, Online ARXPS tutorial, http://goliath.emt.inrs.ca/surfsci/arxps/

  10. M. Cardona, L. Ley, in Photoemission in Solids I, ed. by M. Cardona, L. Ley, (Springer, New York, 1978), pp. 1–104

    Google Scholar 

  11. R.C. Hatch, K.D. Fredrickson, M. Choi, C. Lin, H. Seo, A. Posadas, A.A. Demkov, J. Appl. Phys. 114, 103810 (2013)

    Google Scholar 

  12. VG Scienta, VUV 5000 Data Sheet version 4.1, http://www.vgscienta.com/_resources/File/VUV5000data sheet v4.1web.pdf

  13. M. Kudo, in Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J.T. Grant (IM Publications, Chichester, 2003)

    Google Scholar 

  14. D. Briggs, M.P. Seah, Practical Surface Analysis: By Auger and X-ray Photoelectron Spectroscopy (Wiley, Chichester, 1983)

    Google Scholar 

  15. U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-ray Scattering: From Thin Films to Lateral Nanostructures (Springer, New York, 2004)

    Book  Google Scholar 

  16. K.R. Balasubramanian, Growth and structural investigations of epitaxial hexagonal YMnO3 thin films deposited on wurtzite GaN(001) substrates. Thin Solid Films 515, 1807 (2006). doi:10.1016/j.tsf.2006.07.001

    Article  Google Scholar 

  17. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Plenum, New York, 1996)

    Book  Google Scholar 

  18. J. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis (Kluwer, New York, 2003)

    Book  Google Scholar 

  19. F.M. Pontes, E.R. Leite, E.J.H. Lee, E. Longo, J.A. Varela, Dielectric properties and microstructure of SrTiO3/BaTiO3 multilayer thin films prepared by a chemical route. Thin Solid Films 385, 260 (2001)

    Article  Google Scholar 

  20. S.J. Pennycook, M. Varela, C.J.D. Hetherington, A.I. Kirkland, MRS Bull. 31, 36 (2006)

    Article  Google Scholar 

  21. D.A. Muller et al., Science 319, 1073 (2008)

    Article  Google Scholar 

  22. V.M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction: Experiment, Theory, and Surface Structure Determination (Springer, Berlin, 1986)

    Book  Google Scholar 

  23. A. Ichimiya, P.I. Cohen, Reflection High-Energy Electron Diffraction (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  24. J.H. Haeni, C.D. Theis, D.G. Schlom, RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385 (2000)

    Article  Google Scholar 

  25. I. Bozovic, J.N. Eckstein, Analysis of growing films of complex oxides by RHEED. MRS Bull. 20, 32 (1995)

    Google Scholar 

  26. S.A. Chambers, Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39, 105 (2000)

    Article  Google Scholar 

  27. H. Guo et al., Structural and optical properties of BaTiO3 ultrathin films. Europhys. Lett. 73, 110 (2006)

    Article  Google Scholar 

  28. A. Ohkubo et al., Combinatorial synthesis and optical characterization of alloy and superlattice films based on SrTiO3 and LaAlO3. Appl. Surf. Sci. 252, 2488 (2006)

    Article  Google Scholar 

  29. D. Kan et al., Blue light emission at room temperature from Ar+-irradiated SrTiO3. Nat. Mater. 4, 816 (2005)

    Article  Google Scholar 

  30. I.R. Lewis, H.G.M. Edwards, Handbook of Raman Spectroscopy from the Research Laboratory to the Process Line (Marcel Dekker, New York, 2001)

    Google Scholar 

  31. R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972)

    Google Scholar 

  32. J.B. Theeten, D.E. Aspnes, Ellipsometry in thin film analysis. Annu. Rev. Mater. Sci. 11, 97 (1981)

    Article  Google Scholar 

  33. H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley, New York, 1999)

    Google Scholar 

  34. Z. Sobiesierski, Photoluminescence spectroscopy, in Epioptics: Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces, ed. by J.F. McGilp, D.L. Weaire, C.H. Patterson (Springer, Berlin, 1995), pp. 133–162

    Chapter  Google Scholar 

  35. T. Nakamura, Appl. Surf. Sci. 576, 130–132 (1998)

    Google Scholar 

  36. L.V. Goncharova et al., J. Appl. Phys. 100, 014912 (2006)

    Article  Google Scholar 

  37. V. Shutthanandan et al., Appl. Phys. Lett. 80, 1803 (2002)

    Article  Google Scholar 

  38. J.W. Rabalais, Principles and Applications of Ion Scattering Spectrometry: Surface Chemical and Structural Analysis (Wiley-Interscience, Hoboken, NJ, 2003)

    Google Scholar 

  39. T. Gustafsson, Medium energy ion scattering for near surface structure and depth profiling, in Ion Beams in Nanoscience and Technology, ed. by R. Hellborg, H.J. Whitlow, Y. Zhang (Springer, Heidelberg, 2009), pp. 153–167

    Chapter  Google Scholar 

  40. L.C. Feldman, Rutherford backscattering and nuclear reaction analysis, in Ion Spectroscopies for Surface Analysis, ed. by A.W. Czanderna, D.M. Hercules (Plenum, New York, 1991), pp. 311–362

    Chapter  Google Scholar 

  41. H.-N. Tsai, Y.-C. Liang, H.-Y. Lee, Characteristics of sputter-deposited BaTiO3/SrTiO3 artificial superlattice films on an LaNiO3-coated SrTiO3 substrate. J. Cryst. Growth 284, 65 (2005)

    Article  Google Scholar 

  42. J.C. Vickerman, A. Brown, N.M. Reed, Secondary Ion Mass Spectrometry: Principles and Applications (Clarendon, Oxford, 1989)

    Google Scholar 

  43. D.A. Bonnell, Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications (Wiley-VCH, New York, 1993)

    Google Scholar 

  44. J.H. He, G.H. Zhang, J.D. Guo, Q.L. Guo, K.H. Wu, Atomic structure of Sr-induced reconstructions on the Si(100) surface. J. Appl. Phys. 109, 083522 (2011)

    Article  Google Scholar 

  45. P. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, 2010)

    Book  Google Scholar 

  46. A. Gruverman, S.V. Kalinin, Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics, in Frontiers of Ferroelectricity, ed. by H.L.W. Chan, S.B. Lang (Springer, New York, 2007), pp. 107–116

    Chapter  Google Scholar 

  47. E. Meyer, H.J. Hug, MFM and related techniques, in Scanning Probe Microscopy: The Lab on a Tip, ed. by E. Meyer, H.J. Hug, R. Bennewitz (Springer, Berlin, 2004), pp. 97–125

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Demkov, A.A., Posadas, A.B. (2014). Thin Oxide Film Characterization Methods. In: Integration of Functional Oxides with Semiconductors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9320-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9320-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9319-8

  • Online ISBN: 978-1-4614-9320-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics