Skip to main content

Predictive Engineering of Semiconductor-Oxide Interfaces

  • Chapter
  • First Online:
Integration of Functional Oxides with Semiconductors

Abstract

In this chapter, we provide the reader with the basic concepts of density functional theory and first principles calculations, at the minimum level needed to provide the reader with the necessary vocabulary. The modern electronic structure theory of materials is based on density functional theory introduced by Walter Kohn and co-workers in the mid- 1960s. The theory formulates the many-body problem of interacting electrons and ions in terms of a single variable, namely the electron density. We discuss some key aspects of density functional theory using the local density approximation including calculations of band alignment, dielectric constants, and phonons. We also briefly describe some “beyond DFT” methods that are necessary for describing highly correlated systems such as for example, many magnetic oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born, R. Oppenheimer, Ann. Phys. 84, 458 (1927)

    Google Scholar 

  2. P. Hohenberg, W. Kohn, Phys. Rev. 136, 864 (1964)

    Article  MathSciNet  Google Scholar 

  3. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  MathSciNet  Google Scholar 

  4. J.R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994)

    Article  Google Scholar 

  5. M.C. Payne, M.P. Teter, D.C. Alan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  Google Scholar 

  6. J.C. Phillips, L. Kleinman, Phys. Rev. 116, 287 (1959)

    Article  MATH  Google Scholar 

  7. D. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

    Article  Google Scholar 

  8. N. Trulier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  Google Scholar 

  9. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  Google Scholar 

  10. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  11. G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  12. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, New York, 1988)

    Google Scholar 

  13. D.M. Bylander, L. Kleinman, Phys. Rev. B 36, 3229 (1987)

    Article  Google Scholar 

  14. C.G. Van de Walle, R.M. Martin, Phys. Rev. B 39, 1871 (1989)

    Article  Google Scholar 

  15. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)

    Article  Google Scholar 

  16. G.K. Horton, A.A. Maradudin, Dynamical Properties of Solids (North-Holland, Amsterdam, 1974)

    Google Scholar 

  17. G. Kresse, J. Furtmuller, Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  18. V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, J. Quant. Chem. 77, 895 (2000)

    Article  Google Scholar 

  19. J.P. Lewis, K.R. Glaesemann, G.A. Voth, J. Fritsch, A.A. Demkov, J. Ortega, O.F. Sankey, Phys. Rev. B 64, 195103 (2001)

    Article  Google Scholar 

  20. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    Article  Google Scholar 

  21. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  Google Scholar 

  22. M.J. Frisch et al., Gaussian 98 (Gaussian, Inc., Pittsburgh, PA, 1998)

    Google Scholar 

  23. S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, http://www.pwscf.org

  24. X. Gonze, D.C. Allan, M.P. Teter, Phys. Rev. Lett. 68, 3603 (1992). http://www.abinit.org

    Article  Google Scholar 

  25. M. Städele, J.A. Majewski, P. Vogl, A. Görling, Phys. Rev. Lett. 79, 2089 (1997)

    Article  Google Scholar 

  26. M. Städele, M. Moukara, J.A. Majewski, P. Vogl, Phys. Rev. B 59, 10031 (1999)

    Article  Google Scholar 

  27. F. Aryasetiawan, O. Gunnarsson, Phys. Rev. Lett. 74, 3221 (1995)

    Article  Google Scholar 

  28. M. Rohlfing, S.G. Louie, Phys. Rev. B 62, 4927 (2000)

    Article  Google Scholar 

  29. A.A. Demkov, A. Navrotsky (eds.), Materials Fundamentals of Gate Dielectrics (Springer, Dordrecht, 2005)

    Google Scholar 

  30. L. Hedin, Phys. Rev. 139, A796 (1965)

    Article  Google Scholar 

  31. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 32, 7005 (1985)

    Article  Google Scholar 

  32. S. Lany, Phys. Rev. B 87, 085112 (2013)

    Article  Google Scholar 

  33. R.O. Jones, O. Gunnarson, Rev. Mod. Phys. 61, 689 (1989)

    Article  Google Scholar 

  34. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  Google Scholar 

  35. M. Arai, T. Fujiwara, Phys. Rev. B 51, 1477 (1995)

    Article  Google Scholar 

  36. A. Filippetti, N.A. Spaldin, Phys. Rev. B 67, 125109 (2003)

    Article  Google Scholar 

  37. V.I. Anisimov, P. Kuiper et al., Phys. Rev. B 50, 8257 (1994)

    Article  Google Scholar 

  38. K.W. Lee, W.E. Pickett, Phys. Rev. B 73, 174428 (2006)

    Article  Google Scholar 

  39. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  Google Scholar 

  40. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906E (2006)

    Article  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  42. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  Google Scholar 

  43. The relation between the local Green’s function and charge density is given by n(r) = ∫dw/πf(π)G(r,r;ω). DMFT includes the frequency dependence (dynamics) that DFT does not

    Google Scholar 

  44. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Bluemer, A.K. McMahan, R.T. Scalettar, T. Pruschke, V.I. Anisimov, D. Vollhardt, Phys. Status Solidi 243, 2599 (2006)

    Article  Google Scholar 

  45. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti Rev, Mod. Phys. 78, 865 (2006)

    Article  Google Scholar 

  46. D. Sholl, J.A. Steckel, Density Functional Theory: A Practical Introduction (John Wiley and Sons, Hoboken, NJ, 2009)

    Book  Google Scholar 

  47. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  48. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University press, Cambridge, 2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Demkov, A.A., Posadas, A.B. (2014). Predictive Engineering of Semiconductor-Oxide Interfaces. In: Integration of Functional Oxides with Semiconductors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9320-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9320-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9319-8

  • Online ISBN: 978-1-4614-9320-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics