Abstract
The ensuing development of crystalline epitaxial oxides on semiconductors (COS) has opened a new avenue for growing functional oxide nanostructures utilizing ferroelectricity, superconductivity, and magnetism, in monolithic integration with Si. This is a relatively new area with equal measure of exciting possibilities and difficult challenges. The key to successful oxide-semiconductor heteroepitaxy is to achieve two-dimensional (layer-by-layer) growth. In these systems, in addition to the lattice and thermal mismatch, one has to accommodate the transition between fundamentally different types of chemical bonding across the interface. This bonding mismatch can be accommodated by using intermetallic Zintl compounds, as transition layers, between ionic oxides and covalent semiconductors. In this chapter we briefly introduce the various classes of materials one has to deal with and their general properties. In particular, we discuss semiconductors, transition metal oxides, and Zintl intermetallics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Linear electro-optic effect, also known as the Pockels effect, produces birefringence in an optical medium induced by a constant or varying electric field. Unlike the quadratic Kerr effect, the Pockels effect is linear in the electric field and occurs only in crystals that lack inversion symmetry. The refractive index of an isotropic (to avoid cumbersome tensor notations) electro-optic medium can be expressed as:
$$ n(E)=n-\frac{1}{2}r{n}^3E+O\left({E}^2\right) $$Where n = n(0) is the index in the absence of the field, and r n 3 represents the field derivative of the refractive index. The coefficient r is called the linear electro-optic or Pockels coefficient.
References
R.A. McKee, F.J. Walker, M.F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998)
X. Zhang, A.A. Demkov, H. Li, X. Hu, Y. Wei, J. Kulik, Phys. Rev. B 68, 125323 (2003)
C.R. Ashman, C.J. Först, K. Schwarz, P.E. Blöchl, Phys. Rev. B 69, 075309 (2004)
Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, P. Fejes, Thin Solid Films 462, 51 (2004)
Y. Liang, S. Gan, Y. Wei, R. Gregory, Phys. Status Solidi B 243, 2098 (2006)
C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J.-P. Locquet, J. Fompeyrine, D.J. Webb, C. Dieker, J.W. Seo, Appl. Phys. Lett. 89, 053506 (2006)
J.W. Reiner, A. Posadas, M. Wang, M. Sidorov, Z. Krivokapic, F.J. Walker, T.P. Ma, C.H. Ahn, J. Appl. Phys. 105, 124501 (2009)
V. Vaithnayathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y.L. Li, A. Kochhar, H. Ma, J. Levy, P. Zschack, J.C. Woicik, L.Q. Chen, V. Gopalan, D.G. Schlom, J. Appl. Phys. 100, 024108 (2006)
G. Niu, S. Yin, G. Saint-Girons, B. Gautier, P. Lecoeur, V. Pillard, G. Hollinger, B. Vilquin, Microelectron. Eng. 88, 1232 (2011)
A.K. Pradhan, J.B. Dadson, D. Hunter, K. Zhang, S. Mohanty, E.M. Jackson, B. Lasley-Hunter, K. Lord, T.M. Williams, R.R. Rakhimov, J. Zhang, D.J. Sellmyer, K. Inaba, T. Hasegawa, S. Mathews, B. Joseph, B.R. Sekhar, U.N. Roy, Y. Cui, A. Burger, J. Appl. Phys. 100, 033903 (2006)
J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, R. Ramesh, Appl. Phys. Lett. 85, 2574 (2004)
A. Posadas, M. Berg, H. Seo, A. de Lozanne, A.A. Demkov, D.J. Smith, A.P. Kirk, D. Zhernokletov, R.M. Wallace, Appl. Phys. Lett. 98, 053104 (2011)
A. Posadas, M. Berg, H. Seo, D.J. Smith, A.P. Kirk, D. Zhernokletov, R.M. Wallace, A. de Lozanne, A.A. Demkov, Microelectron. Eng. 88, 1444 (2011)
H. Seo, A.B. Posadas, C. Mitra, A.V. Kvit, J. Ramdani, A.A. Demkov, Phys. Rev. B 86, 075301 (2012)
M.D. McDaniel, A. Posadas, T. Wang, A.A. Demkov, J.G. Ekerdt, Thin Solid Films 520, 6525 (2012)
B.W. Wessels, J. Cryst. Growth 195, 706 (1998)
D. Dimos, Annu. Rev. Mater. Sci. 25, 273 (1995)
G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2010)
D.L. Polla, L.F. Francis, Annu. Rev. Mater. Sci. 28, 563 (1998)
X. Chen, S. Shen, L. Guo, S. Mao, Chem. Rev. 110, 6503 (2010)
S. Abel, T. Stoöferle, C. Marchiori, C. Rossel, M.D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B.J. Offrein, J. Fompeyrine, Nat. Commun. 4, 1671 (2013)
A.A. Demkov, H. Seo, X. Zhang, J. Ramdani, Appl. Phys. Lett. 100, 071602 (2012)
P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th edn. (Springer, Berlin, 2010)
W.A. Harrison, Electronic Structure and the Properties of Solids (Dover, New York, 1989)
N.W. Ashcroft, N.D. Mermin, Solid State Physics (Cengage Learning, London, 1976) (Chap. 10)
P.G. Neudeck, Silicon carbide technology, in The VLSI Handbook, ed. by W.-K. Chen (CRC Press, Boca Raton, FL, 2006)
C.W. Bunn, Proc. Phys. Soc. Lond. 47, 836 (1935)
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
S. Maekawa, T. Tohyama, S.E. Barnes, S. Ishihara, W. Koshibae, G. Khaliullin, Physics of Transition Metal Oxides. Springer Series in Solid-State Sciences, vol. 144 (Springer, Berlin, 2004)
P.A. Cox, Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties. The International Series of Monographs on Chemistry (Oxford University Press, Oxford, 1992)
V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)
M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials. Oxford Classic Texts in the Physical Sciences (Oxford University Press, Oxford, 2001)
B.A. Strukov, A.P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Berlin, 1998)
G.F. Dionne, Magnetic Oxides (Springer, New York, 1978)
J. Stöhr, H.C. Siegmann, Magnetism (Springer, Berlin, 2006)
D.G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, M.A. Zurbuchen, J. Am. Ceram. Soc. 91, 2429 (2008)
J.B. Goodneough, J.-S. Zhou, Chem. Mater. 10, 2980 (1998)
J.H. van Vleck, Rev. Mod. Phys. 25, 220 (1953)
J.C. Slater, Phys. Rev. 49, 537 (1936)
J.C. Slater, Phys. Rev. 49, 931 (1936)
P.M. Raccah, J.B. Goodenough, Phys. Rev. 155, 932 (1967)
A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M.W. Haverkort, D.I. Khomskii, Phys. Rev. Lett. 97, 247208 (2006)
H. Seo, A.B. Posadas, A.A. Demkov, Phys. Rev. B 86, 014430 (2012)
N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006)
M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)
L.W. Martin, S.P. Crane, Y.-H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, R. Ramesh, J. Phys. Condens. Matter 20, 434220 (2008)
I.E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1960)
R. Thomas, J.F. Scott, D.N. Bose, R.S. Katiyar, J. Phys. Condens. Matter 22, 423201 (2010)
S.M. Kauzlarich, Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH Publishers Inc., New York, 1996)
T.F. Faessler, Zintl Phases: Principles and Recent Developments (Springer, Heidelberg, 2011)
G.J. Miller, Structure and bonding at the Zintl border, in Chemistry, Structure and Bonding of Zintl Phases and Ions, ed. by S.M. Kauzlarich (Wiley-VCH, New York, 1996)
E. Zintl, Z. Phys. Chem. 154, 1 (1931)
W. Klemm, E. Busmann, Z. Anorg. Allg. Chem. 319, 297 (1963)
H. Schaefer, B. Eisenmann, W. Mueller, Angew. Chem. Int. Ed. 12, 694 (1973)
R. Nesper, Prog. Solid State Chem. 20, 1 (1990)
G.J. Miller, M.W. Schmidt, F. Wang, T.S. You, Quantitative advances in the Zintl-klemm formalism, in Zintl Phases: Principles and Recent Developments, ed. by T.F. Faessler (Springer, Berlin, 2011)
F. Wang, G.J. Miller, Eur. J. Inorg. Chem. 26, 3989 (2011)
M.H. Whangbo, L. Changhoon, J. Koehler, Eur. J. Inorg. Chem. 26, 3841 (2011)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2014 The Author(s)
About this chapter
Cite this chapter
Demkov, A.A., Posadas, A.B. (2014). Introduction. In: Integration of Functional Oxides with Semiconductors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9320-4_1
Download citation
DOI: https://doi.org/10.1007/978-1-4614-9320-4_1
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-9319-8
Online ISBN: 978-1-4614-9320-4
eBook Packages: EngineeringEngineering (R0)