Skip to main content

Abstract

The ensuing development of crystalline epitaxial oxides on semiconductors (COS) has opened a new avenue for growing functional oxide nanostructures utilizing ferroelectricity, superconductivity, and magnetism, in monolithic integration with Si. This is a relatively new area with equal measure of exciting possibilities and difficult challenges. The key to successful oxide-semiconductor heteroepitaxy is to achieve two-dimensional (layer-by-layer) growth. In these systems, in addition to the lattice and thermal mismatch, one has to accommodate the transition between fundamentally different types of chemical bonding across the interface. This bonding mismatch can be accommodated by using intermetallic Zintl compounds, as transition layers, between ionic oxides and covalent semiconductors. In this chapter we briefly introduce the various classes of materials one has to deal with and their general properties. In particular, we discuss semiconductors, transition metal oxides, and Zintl intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Linear electro-optic effect, also known as the Pockels effect, produces birefringence in an optical medium induced by a constant or varying electric field. Unlike the quadratic Kerr effect, the Pockels effect is linear in the electric field and occurs only in crystals that lack inversion symmetry. The refractive index of an isotropic (to avoid cumbersome tensor notations) electro-optic medium can be expressed as:

    $$ n(E)=n-\frac{1}{2}r{n}^3E+O\left({E}^2\right) $$

    Where n = n(0) is the index in the absence of the field, and r n 3 represents the field derivative of the refractive index. The coefficient r is called the linear electro-optic or Pockels coefficient.

References

  1. R.A. McKee, F.J. Walker, M.F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998)

    Article  Google Scholar 

  2. X. Zhang, A.A. Demkov, H. Li, X. Hu, Y. Wei, J. Kulik, Phys. Rev. B 68, 125323 (2003)

    Article  Google Scholar 

  3. C.R. Ashman, C.J. Först, K. Schwarz, P.E. Blöchl, Phys. Rev. B 69, 075309 (2004)

    Article  Google Scholar 

  4. Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, P. Fejes, Thin Solid Films 462, 51 (2004)

    Article  Google Scholar 

  5. Y. Liang, S. Gan, Y. Wei, R. Gregory, Phys. Status Solidi B 243, 2098 (2006)

    Article  Google Scholar 

  6. C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J.-P. Locquet, J. Fompeyrine, D.J. Webb, C. Dieker, J.W. Seo, Appl. Phys. Lett. 89, 053506 (2006)

    Article  Google Scholar 

  7. J.W. Reiner, A. Posadas, M. Wang, M. Sidorov, Z. Krivokapic, F.J. Walker, T.P. Ma, C.H. Ahn, J. Appl. Phys. 105, 124501 (2009)

    Article  Google Scholar 

  8. V. Vaithnayathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y.L. Li, A. Kochhar, H. Ma, J. Levy, P. Zschack, J.C. Woicik, L.Q. Chen, V. Gopalan, D.G. Schlom, J. Appl. Phys. 100, 024108 (2006)

    Article  Google Scholar 

  9. G. Niu, S. Yin, G. Saint-Girons, B. Gautier, P. Lecoeur, V. Pillard, G. Hollinger, B. Vilquin, Microelectron. Eng. 88, 1232 (2011)

    Article  Google Scholar 

  10. A.K. Pradhan, J.B. Dadson, D. Hunter, K. Zhang, S. Mohanty, E.M. Jackson, B. Lasley-Hunter, K. Lord, T.M. Williams, R.R. Rakhimov, J. Zhang, D.J. Sellmyer, K. Inaba, T. Hasegawa, S. Mathews, B. Joseph, B.R. Sekhar, U.N. Roy, Y. Cui, A. Burger, J. Appl. Phys. 100, 033903 (2006)

    Article  Google Scholar 

  11. J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, R. Ramesh, Appl. Phys. Lett. 85, 2574 (2004)

    Article  Google Scholar 

  12. A. Posadas, M. Berg, H. Seo, A. de Lozanne, A.A. Demkov, D.J. Smith, A.P. Kirk, D. Zhernokletov, R.M. Wallace, Appl. Phys. Lett. 98, 053104 (2011)

    Article  Google Scholar 

  13. A. Posadas, M. Berg, H. Seo, D.J. Smith, A.P. Kirk, D. Zhernokletov, R.M. Wallace, A. de Lozanne, A.A. Demkov, Microelectron. Eng. 88, 1444 (2011)

    Article  Google Scholar 

  14. H. Seo, A.B. Posadas, C. Mitra, A.V. Kvit, J. Ramdani, A.A. Demkov, Phys. Rev. B 86, 075301 (2012)

    Article  Google Scholar 

  15. M.D. McDaniel, A. Posadas, T. Wang, A.A. Demkov, J.G. Ekerdt, Thin Solid Films 520, 6525 (2012)

    Article  Google Scholar 

  16. B.W. Wessels, J. Cryst. Growth 195, 706 (1998)

    Article  Google Scholar 

  17. D. Dimos, Annu. Rev. Mater. Sci. 25, 273 (1995)

    Article  Google Scholar 

  18. G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2010)

    Article  Google Scholar 

  19. D.L. Polla, L.F. Francis, Annu. Rev. Mater. Sci. 28, 563 (1998)

    Article  Google Scholar 

  20. X. Chen, S. Shen, L. Guo, S. Mao, Chem. Rev. 110, 6503 (2010)

    Article  Google Scholar 

  21. S. Abel, T. Stoöferle, C. Marchiori, C. Rossel, M.D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B.J. Offrein, J. Fompeyrine, Nat. Commun. 4, 1671 (2013)

    Article  Google Scholar 

  22. A.A. Demkov, H. Seo, X. Zhang, J. Ramdani, Appl. Phys. Lett. 100, 071602 (2012)

    Article  Google Scholar 

  23. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  24. W.A. Harrison, Electronic Structure and the Properties of Solids (Dover, New York, 1989)

    Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Cengage Learning, London, 1976) (Chap. 10)

    Google Scholar 

  26. P.G. Neudeck, Silicon carbide technology, in The VLSI Handbook, ed. by W.-K. Chen (CRC Press, Boca Raton, FL, 2006)

    Google Scholar 

  27. C.W. Bunn, Proc. Phys. Soc. Lond. 47, 836 (1935)

    Article  Google Scholar 

  28. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  29. S. Maekawa, T. Tohyama, S.E. Barnes, S. Ishihara, W. Koshibae, G. Khaliullin, Physics of Transition Metal Oxides. Springer Series in Solid-State Sciences, vol. 144 (Springer, Berlin, 2004)

    Book  Google Scholar 

  30. P.A. Cox, Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties. The International Series of Monographs on Chemistry (Oxford University Press, Oxford, 1992)

    Google Scholar 

  31. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  32. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials. Oxford Classic Texts in the Physical Sciences (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  33. B.A. Strukov, A.P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  34. G.F. Dionne, Magnetic Oxides (Springer, New York, 1978)

    Google Scholar 

  35. J. Stöhr, H.C. Siegmann, Magnetism (Springer, Berlin, 2006)

    Google Scholar 

  36. D.G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, M.A. Zurbuchen, J. Am. Ceram. Soc. 91, 2429 (2008)

    Article  Google Scholar 

  37. J.B. Goodneough, J.-S. Zhou, Chem. Mater. 10, 2980 (1998)

    Article  Google Scholar 

  38. J.H. van Vleck, Rev. Mod. Phys. 25, 220 (1953)

    Article  MATH  Google Scholar 

  39. J.C. Slater, Phys. Rev. 49, 537 (1936)

    Article  Google Scholar 

  40. J.C. Slater, Phys. Rev. 49, 931 (1936)

    Article  Google Scholar 

  41. P.M. Raccah, J.B. Goodenough, Phys. Rev. 155, 932 (1967)

    Article  Google Scholar 

  42. A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M.W. Haverkort, D.I. Khomskii, Phys. Rev. Lett. 97, 247208 (2006)

    Article  Google Scholar 

  43. H. Seo, A.B. Posadas, A.A. Demkov, Phys. Rev. B 86, 014430 (2012)

    Article  Google Scholar 

  44. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006)

    Article  Google Scholar 

  45. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  Google Scholar 

  46. L.W. Martin, S.P. Crane, Y.-H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, R. Ramesh, J. Phys. Condens. Matter 20, 434220 (2008)

    Article  Google Scholar 

  47. I.E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1960)

    Google Scholar 

  48. R. Thomas, J.F. Scott, D.N. Bose, R.S. Katiyar, J. Phys. Condens. Matter 22, 423201 (2010)

    Article  Google Scholar 

  49. S.M. Kauzlarich, Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH Publishers Inc., New York, 1996)

    Google Scholar 

  50. T.F. Faessler, Zintl Phases: Principles and Recent Developments (Springer, Heidelberg, 2011)

    Google Scholar 

  51. G.J. Miller, Structure and bonding at the Zintl border, in Chemistry, Structure and Bonding of Zintl Phases and Ions, ed. by S.M. Kauzlarich (Wiley-VCH, New York, 1996)

    Google Scholar 

  52. E. Zintl, Z. Phys. Chem. 154, 1 (1931)

    Google Scholar 

  53. W. Klemm, E. Busmann, Z. Anorg. Allg. Chem. 319, 297 (1963)

    Article  Google Scholar 

  54. H. Schaefer, B. Eisenmann, W. Mueller, Angew. Chem. Int. Ed. 12, 694 (1973)

    Article  Google Scholar 

  55. R. Nesper, Prog. Solid State Chem. 20, 1 (1990)

    Article  Google Scholar 

  56. G.J. Miller, M.W. Schmidt, F. Wang, T.S. You, Quantitative advances in the Zintl-klemm formalism, in Zintl Phases: Principles and Recent Developments, ed. by T.F. Faessler (Springer, Berlin, 2011)

    Google Scholar 

  57. F. Wang, G.J. Miller, Eur. J. Inorg. Chem. 26, 3989 (2011)

    Article  Google Scholar 

  58. M.H. Whangbo, L. Changhoon, J. Koehler, Eur. J. Inorg. Chem. 26, 3841 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Demkov, A.A., Posadas, A.B. (2014). Introduction. In: Integration of Functional Oxides with Semiconductors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9320-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9320-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9319-8

  • Online ISBN: 978-1-4614-9320-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics