Induction of Metabolic Syndrome by Excess Fructose Consumption

Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 9)

Abstract

Fructose is an important nutritive component of foods such as honey and fruit, but this easily available sweetener may contribute to increased caloric consumption from overeating. Fructose is now a major component of the Western diet, with increased consumption associated with obesity, metabolic syndrome, and cardiovascular disorders in observational and short-term intervention studies, mainly in animal models. Rodent studies have identified possible mechanisms for the adverse effects of fructose when ingested in large amounts. Fructose promoted de novo lipogenesis, inflammation, and increased sympathetic tone. These mechanisms induced hepatic insulin resistance, increased total and visceral fat mass with accumulation of ectopic fat in the liver and skeletal muscle, and dyslipidemia. Fructose reduced leptin and insulin signals for satiety, caused structural and functional damage to the heart and blood vessels, and disrupted the diversity of the gut microbiota. These early effects may initiate the development of the metabolic syndrome. Despite this evidence from rodents, there are few long-term intervention studies in humans, especially at a moderate dose. The definition of prudent fructose consumption is needed, but this will require carefully controlled dose–response studies in humans.

Keywords

Fructose Metabolic syndrome Leptin Insulin Lipogenesis Hypertension Inflammation Gut microbiota Cardiac hypertrophy 

References

  1. 1.
    Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46PubMedGoogle Scholar
  2. 2.
  3. 3.
    Bobridge KS, Haines GL, Mori TA et al (2012) Dietary fructose in relation to blood pressure and serum uric acid in adolescent boys and girls. J Hum Hypertens 27:217–224PubMedGoogle Scholar
  4. 4.
    Wolf A, Bray GA, Popkin BM (2008) A short history of beverages and how our body treats them. Obes Rev 9:151–164PubMedGoogle Scholar
  5. 5.
    White JS (2008) Straight talk about high-fructose corn syrup: what it is and what it ain’t. Am J Clin Nutr 88:1716S–1721SPubMedGoogle Scholar
  6. 6.
    Bray GA (2010) Fructose: pure, white, and deadly? Fructose, by any other name, is a health hazard. J Diabetes Sci Technol 4:1003–1007PubMedCentralPubMedGoogle Scholar
  7. 7.
    Elliott SS, Keim NL, Stern JS et al (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922PubMedGoogle Scholar
  8. 8.
    Johnson RJ, Segal MS, Sautin Y et al (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899–906PubMedGoogle Scholar
  9. 9.
    Le KA, Tappy L (2006) Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9: 469–475PubMedGoogle Scholar
  10. 10.
    Martinez FJ, Rizza RA, Romero JC (1994) High-fructose feeding elicits insulin resistance, hyperinsulinism, and hypertension in normal mongrel dogs. Hypertension 23:456–463PubMedGoogle Scholar
  11. 11.
    Patel J, Iyer A, Brown L (2009) Evaluation of the chronic complications of diabetes in a high fructose diet in rats. Indian J Biochem Biophys 46:66–72PubMedGoogle Scholar
  12. 12.
    Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332:145–159PubMedGoogle Scholar
  13. 13.
    Hashikawa-Hobara N, Hashikawa N, Inoue Y et al (2012) Candesartan cilexetil improves angiotensin II type 2 receptor-mediated neurite outgrowth via the PI3K-Akt pathway in fructose-induced insulin-resistant rats. Diabetes 61:925–932PubMedGoogle Scholar
  14. 14.
    Takagawa Y, Berger ME, Hori MT et al (2001) Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries. Am J Hypertens 14:811–817PubMedGoogle Scholar
  15. 15.
    Ishimoto T, Lanaspa MA, Le MT et al (2012) Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc Natl Acad Sci U S A 109: 4320–4325PubMedCentralPubMedGoogle Scholar
  16. 16.
    Park OJ, Cesar D, Faix D et al (1992) Mechanisms of fructose-induced hypertriglyceridaemia in the rat. Activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase. Biochem J 282:753–757PubMedGoogle Scholar
  17. 17.
    Song GY, Ren LP, Chen SC et al (2012) Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57BL/J6 mice. Clin Exp Pharmacol Physiol 8:1440–1681Google Scholar
  18. 18.
    Okazaki M, Zhang H, Yoshida Y et al (1994) Correlation between plasma fibrinogen and serum lipids in rats with hyperlipidemia induced by cholesterol free-high fructose or high cholesterol diet. J Nutr Sci Vitaminol 40:479–489PubMedGoogle Scholar
  19. 19.
    Haub S, Kanuri G, Volynets V et al (2010) Serotonin reuptake transporter (SERT) plays a critical role in the onset of fructose-induced hepatic steatosis in mice. Am J Physiol Gastrointest Liver Physiol 298:G335–G344PubMedGoogle Scholar
  20. 20.
    Patel J, Matnor NA, Iyer A et al (2011) A regenerative antioxidant protocol of vitamin E and α-lipoic acid ameliorates cardiovascular and metabolic changes in fructose-fed rats. Evid Based Complement Altern Med Article 120801, doi:10.1155/2011/120801Google Scholar
  21. 21.
    Dai S, McNeill JH (1995) Fructose-induced hypertension in rats is concentration- and duration-dependent. J Pharmacol Toxicol Methods, pp 101–107Google Scholar
  22. 22.
    Uchida T, Okumura K, Ito T et al (2002) Quinapril treatment restores the vasodilator action of insulin in fructose-hypertensive rats. Clin Exp Pharmacol Physiol 29:381–385PubMedGoogle Scholar
  23. 23.
    Sanchez-Lozada LG, Mu W, Roncal C et al (2010) Comparison of free fructose and glucose to sucrose in the ability to cause fatty liver. Eur J Nutr 49:1–9PubMedCentralPubMedGoogle Scholar
  24. 24.
    Armutcu F, Coskun O, Gurel A et al (2005) Thymosin alpha-1 attenuates lipid peroxidation and improves fructose-induced steatohepatitis in rats. Clin Biochem 38:540–547PubMedGoogle Scholar
  25. 25.
    Bergheim I, Weber S, Vos M et al (2008) Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 48:983–992PubMedGoogle Scholar
  26. 26.
    Jurgens H, Haass W, Castaneda TR et al (2005) Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 13:1146–1156PubMedGoogle Scholar
  27. 27.
    Faeh D, Minehira K, Schwarz JM et al (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54:1907–1913PubMedGoogle Scholar
  28. 28.
    Stanhope KL, Schwarz JM, Keim NL et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119:1322–1334PubMedCentralPubMedGoogle Scholar
  29. 29.
    Bantle JP, Raatz SK, Thomas W et al (2000) Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 72:1128–1134PubMedGoogle Scholar
  30. 30.
    Le KA, Ith M, Kreis R et al (2009) Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 89:1760–1765PubMedGoogle Scholar
  31. 31.
    Sievenpiper JL, de Souza RJ, Mirrahimi A et al (2012) Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 156:291–304PubMedGoogle Scholar
  32. 32.
    Spitzer L, Rodin J (1987) Effects of fructose and glucose preloads on subsequent food intake. Appetite 8:135–145PubMedGoogle Scholar
  33. 33.
    Warwick ZS, Weingarten HP (1994) Dynamics of intake suppression after a preload: role of calories, volume, and macronutrients. Am J Physiol 266:R1314–R1318PubMedGoogle Scholar
  34. 34.
    Iizuka K, Bruick RK, Liang G et al (2004) Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 101:7281–7286PubMedCentralPubMedGoogle Scholar
  35. 35.
    Virkamaki A, Korsheninnikova E, Seppala-Lindroos A et al (2001) Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 50:2337–2343PubMedGoogle Scholar
  36. 36.
    Shapiro A, Mu W, Roncal C et al (2008) Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol 295:R1370–R1375PubMedGoogle Scholar
  37. 37.
    Roglans N, Vila L, Farre M et al (2007) Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45:778–788PubMedGoogle Scholar
  38. 38.
    Payne AN, Chassard C, Lacroix C (2012) Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev 13:799–809PubMedGoogle Scholar
  39. 39.
    Chew GT, Gan SK, Watts GF (2006) Revisiting the metabolic syndrome. Med J Aust 185: 445–449PubMedGoogle Scholar
  40. 40.
    Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365: 1415–1428PubMedGoogle Scholar
  41. 41.
    Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62PubMedGoogle Scholar
  42. 42.
    American Heart Association (2010) Heart disease and stroke statistics—2010 update. American Heart Association, DallasGoogle Scholar
  43. 43.
    Cameron AJ, Magliano DJ, Zimmet PZ et al (2007) The metabolic syndrome in Australia: prevalence using four definations. Diabetes Res Clin Pract 777:471–478Google Scholar
  44. 44.
    Sone H, Mizuno S, Fujii H et al (2005) Is the diagnosis of metabolic syndrome useful for predicting cardiovascular disease in Asian diabetic patients? Diabetes Care 28:1463–1471PubMedGoogle Scholar
  45. 45.
    Li WJ, Xue H, Sun K et al (2008) Cardiovascular risk and prevalence of metabolic syndrome by differing criteria. Chin Med J (Engl) 121:1532–1536Google Scholar
  46. 46.
    Gupta R, Deedwania PC, Gupta A et al (2004) Prevalence of metabolic syndrome in an Indian urban population. Int J Cardiol 97:257–261PubMedGoogle Scholar
  47. 47.
    Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880PubMedGoogle Scholar
  48. 48.
    Lee MJ, Wu YY, Fried SK (2010) Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care 13:371–376PubMedCentralPubMedGoogle Scholar
  49. 49.
    Haffner SM (2006) The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol 97:3–11Google Scholar
  50. 50.
    Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176PubMedCentralPubMedGoogle Scholar
  51. 51.
    Shimizu T (2009) Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 49: 123–150PubMedGoogle Scholar
  52. 52.
    Iyer A, Brown L (2010) Lipid mediators and inflammation in glucose intolerance and insulin resistance. Drug Discov Today Dis Mech 7:e191–e197Google Scholar
  53. 53.
    Iyer A, Fairlie DP, Prins JB et al (2010) Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol 6:71–82PubMedGoogle Scholar
  54. 54.
    Hotamisligil GS, Peraldi P, Budavari A et al (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity induced insulin resistance. Science 271:665–668PubMedGoogle Scholar
  55. 55.
    Tesauro M, Cardillo C (2011) Obesity, blood vessels and metabolic syndrome. Acta Physiol 203:279–286Google Scholar
  56. 56.
    Kaileh M, Sen R (2010) Role of NFkB in the anti-inflammatory effects of tocotrienols. J Am Coll Nutr 29:334–339Google Scholar
  57. 57.
    Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783PubMedGoogle Scholar
  58. 58.
    Heman RH, Zakim D (1968) Fructose metabolism: 1. The fructose metabolic pathway. Am J Clin Nutr 21:245–249PubMedGoogle Scholar
  59. 59.
    Mayes PA (1993) Intermediary metabolism of fructose. Am J Clin Nutr 58:754S–765SPubMedGoogle Scholar
  60. 60.
    Buchs AE, Sasson S, Joost HG et al (1998) Characterization of GLUT5 domains responsible for fructose transport. Endocrinology 139:827–831PubMedGoogle Scholar
  61. 61.
    Jones HF, Butler RN, Brooks DA (2011) Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 300:G202–G206PubMedGoogle Scholar
  62. 62.
    Barone S, Fussell SL, Singh AK et al (2009) Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 284: 5056–5066PubMedGoogle Scholar
  63. 63.
    Soleimani M (2011) Dietary fructose, salt absorption and hypertension in metabolic syndrome: towards a new paradigm. Acta Physiol (Oxf) 201:55–62Google Scholar
  64. 64.
    Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133–157PubMedGoogle Scholar
  65. 65.
    Rodriguez-Calvo R, Barroso E, Serrano L et al (2009) Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A. Hepatology 49:106–115PubMedGoogle Scholar
  66. 66.
    Stanhope KL (2012) Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med 63:329–343PubMedGoogle Scholar
  67. 67.
    Fried SK, Russell CD, Grauso NL et al (1993) Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 92:2191–2198PubMedCentralPubMedGoogle Scholar
  68. 68.
    Abdullah MM, Riediger NN, Chen Q et al (2009) Effects of long-term consumption of a high-fructose diet on conventional cardiovascular risk factors in Sprague–Dawley rats. Mol Cell Biochem 327:247–256PubMedGoogle Scholar
  69. 69.
    Hamdy O, Porramatikul S, Al-Ozairi E (2006) Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2:367–373PubMedGoogle Scholar
  70. 70.
    Despres JP, Moorjani S, Lupien PJ et al (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10:497–511PubMedGoogle Scholar
  71. 71.
    Despres JP (1998) The insulin resistance-dyslipidemic syndrome of visceral obesity: effect on patients’ risk. Obes Res 6:8S–17SPubMedGoogle Scholar
  72. 72.
    Pouliot MC, Despres JP, Nadeau A et al (1992) Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 41:826–834PubMedGoogle Scholar
  73. 73.
    Bursac BN, Djordjevic AD, Vasiljevic AD et al (2012) Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J Nutr Biochem 24:1166–1172PubMedGoogle Scholar
  74. 74.
    Schwartz MW, Baskin DG, Kaiyala KJ et al (1999) Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 69:584–596PubMedGoogle Scholar
  75. 75.
    Sipols AJ, Baskin DG, Schwartz MW (1995) Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44:147–151PubMedGoogle Scholar
  76. 76.
    Brief DJ, Davis JD (1984) Reduction of food intake and body weight by chronic intraventricular insulin infusion. Brain Res Bull 12:571–575PubMedGoogle Scholar
  77. 77.
    Woods SC, Porte DJ (1976) Insulin and the set-point regulation of body weight. In: Novin D, Bray GA, Wyrwichka W (eds) Hunger: basic mechanisms and clinical implications. Raven Press, New York, pp 273–280Google Scholar
  78. 78.
    Baskin DG, Wilcox BJ, Figlewicz DP et al (1988) Insulin and insulin-like growth factors in the CNS. Trends Neurosci 11:107–111PubMedGoogle Scholar
  79. 79.
    Baskin DG, Sipols AJ, Schwartz MW et al (1993) Immunocytochemical detection of insulin receptor substrate-1 (IRS-1) in rat brain: colocalization with phosphotyrosine. Regul Pept 48: 257–266PubMedGoogle Scholar
  80. 80.
    Purnell JQ, Zinman B, Brunzell JD (2013) The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) study. Circulation 127: 180–187PubMedGoogle Scholar
  81. 81.
    Gabriely I, Hawkins M, Vilcu C et al (2002) Fructose amplifies counterregulatory responses to hypoglycemia in humans. Diabetes 51:893–900PubMedGoogle Scholar
  82. 82.
    Farah V, Elased KM, Morris M (2007) Genetic and dietary interactions: role of angiotensin AT1a receptors in response to a high-fructose diet. Am J Physiol Heart Circ Physiol 293:20Google Scholar
  83. 83.
    Verma S, Bhanot S, McNeill JH (1999) Sympathectomy prevents fructose-induced hyperinsulinemia and hypertension. Eur J Pharmacol 373:R1–R4PubMedGoogle Scholar
  84. 84.
    Farah V, Elased KM, Chen Y et al (2006) Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 130:41–50PubMedGoogle Scholar
  85. 85.
    Mohuczy D, Gelband CH, Phillips MI (1999) Antisense inhibition of AT1 receptor in vascular smooth muscle cells using adeno-associated virus-based vector. Hypertension 33:354–359PubMedGoogle Scholar
  86. 86.
    Katovich MJ, Reaves PY, Francis SC et al (2001) Gene therapy attenuates the elevated blood pressure and glucose intolerance in an insulin-resistant model of hypertension. J Hypertens 19:1553–1558PubMedGoogle Scholar
  87. 87.
    Shinozaki K, Ayajiki K, Nishio Y et al (2004) Evidence for a causal role of the renin-angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 43:255–262PubMedGoogle Scholar
  88. 88.
    Brito JO, Ponciano K, Figueroa D et al (2008) Parasympathetic dysfunction is associated with insulin resistance in fructose-fed female rats. Braz J Med Biol Res 41:804–808PubMedGoogle Scholar
  89. 89.
    Brown CM, Dulloo AG, Yepuri G et al (2008) Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol 294:R730–R737PubMedGoogle Scholar
  90. 90.
    Miller AW, Sims JJ, Canavan A et al (1999) Impaired vagal reflex activity in insulin-resistant rats. J Cardiovasc Pharmacol 33:698–702PubMedGoogle Scholar
  91. 91.
    De Angelis K, Senador DD, Mostarda C et al (2012) Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol 302:R950–R957PubMedGoogle Scholar
  92. 92.
    Wang GJ, Tomasi D, Backus W et al (2008) Gastric distention activates satiety circuitry in the human brain. Neuroimage 39:1824–1831PubMedGoogle Scholar
  93. 93.
    Carnethon MR, Jacobs DR Jr, Sidney S et al (2003) Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care 26: 3035–3041PubMedGoogle Scholar
  94. 94.
    Morton GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295PubMedGoogle Scholar
  95. 95.
    Farooqi IS, O’Rahilly S (2009) Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr 89:980S–984SPubMedGoogle Scholar
  96. 96.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770PubMedGoogle Scholar
  97. 97.
    Stanhope KL, Havel PJ (2008) Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am J Clin Nutr 88: 1733S–1737SPubMedCentralPubMedGoogle Scholar
  98. 98.
    Harris M, Aschkenasi C, Elias CF et al (2001) Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling. J Clin Invest 107:111–120PubMedCentralPubMedGoogle Scholar
  99. 99.
    Legradi G, Emerson CH, Ahima RS et al (1998) Arcuate nucleus ablation prevents fasting-induced suppression of ProTRH mRNA in the hypothalamic paraventricular nucleus. Neuroendocrinology 68:89–97PubMedGoogle Scholar
  100. 100.
    Nillni EA, Vaslet C, Harris M et al (2000) Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways. J Biol Chem 275:36124–36133PubMedGoogle Scholar
  101. 101.
    Buettner C, Pocai A, Muse ED et al (2006) Critical role of STAT3 in leptin’s metabolic actions. Cell Metab 4:49–60PubMedCentralPubMedGoogle Scholar
  102. 102.
    Banks WA, Coon AB, Robinson SM et al (2004) Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes 53:1253–1260PubMedGoogle Scholar
  103. 103.
    Lewis GF (1997) Fatty acid regulation of very low density lipoprotein production. Curr Opin Lipidol 8:146–153PubMedGoogle Scholar
  104. 104.
    Matsuzaka T, Shimano H, Yahagi N et al (2004) Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes 53:560–569PubMedGoogle Scholar
  105. 105.
    Dentin R, Girard J, Postic C (2005) Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87:81–86PubMedGoogle Scholar
  106. 106.
    Dekker MJ, Su Q, Baker C et al (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299:E685–E694PubMedGoogle Scholar
  107. 107.
    Adams LA, Lymp JF, St. Sauver J et al (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129:113–121PubMedGoogle Scholar
  108. 108.
    Curry DL (1989) Effects of mannose and fructose on the synthesis and secretion of insulin. Pancreas 4:2–9PubMedGoogle Scholar
  109. 109.
    Olofsson S-O, Andersson L, Håversen L et al (2011) The formation of lipid droplets: possible role in the development of insulin resistance/type 2 diabetes. Prostaglandins Leukot Essent Fatty Acids 85:215–218PubMedGoogle Scholar
  110. 110.
    Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165–169PubMedCentralPubMedGoogle Scholar
  111. 111.
    Bostrom P, Andersson L, Rutberg M et al (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9:1286–1293PubMedGoogle Scholar
  112. 112.
    Bostrom P, Andersson L, Vind B et al (2010) The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes. Diabetes 59:1870–1878PubMedGoogle Scholar
  113. 113.
    Álvarez-Guardia D, Palomer X, Coll T et al (2011) PPARβ/δ activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochim Biophys Acta 1811:59–67PubMedGoogle Scholar
  114. 114.
    Spruss A, Kanuri G, Wagnerberger S et al (2009) Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50:1094–1104PubMedGoogle Scholar
  115. 115.
    Tsai J, Zhang R, Qiu W et al (2009) Inflammatory NF-kappaB activation promotes hepatic apolipoprotein B100 secretion: evidence for a link between hepatic inflammation and lipoprotein production. Am J Physiol Gastrointest Liver Physiol 296:G1287–G1298PubMedGoogle Scholar
  116. 116.
    Weng-Yew W, Brown L (2011) Nutrapharmacology of tocotrienols for metabolic syndrome. Curr Pharm Des 17:2206–2214PubMedGoogle Scholar
  117. 117.
    Kelley GL, Allan G, Azhar S (2004) High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 145:548–555PubMedGoogle Scholar
  118. 118.
    Wyllie S, Fairlamb AH (2011) Methylglyoxal metabolism in trypanosomes and leishmania. Semin Cell Dev Biol 22:271–277PubMedCentralPubMedGoogle Scholar
  119. 119.
    Shinohara M, Thornalley PJ, Giardino I et al (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101: 1142–1147PubMedCentralPubMedGoogle Scholar
  120. 120.
    Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299PubMedGoogle Scholar
  121. 121.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature, pp 860–867Google Scholar
  122. 122.
    Aggarwal BB, Sundaram C, Prasad S et al (2010) Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 80:1613–1631PubMedCentralPubMedGoogle Scholar
  123. 123.
    Anderson EA, Hoffman RP, Balon TW et al (1991) Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87:2246–2252PubMedCentralPubMedGoogle Scholar
  124. 124.
    Chaudhuri A, Dandona P, Fonseca V (2012) Cardiovascular benefits of exogenous insulin. J Clin Endocrinol Metab 97:3079–3091PubMedGoogle Scholar
  125. 125.
    Goud C, Pitt B, Webb RC et al (1998) Synergistic actions of insulin and troglitazone on contractility in endothelium-denuded rat aortic rings. Am J Physiol 275:E882–E887PubMedGoogle Scholar
  126. 126.
    Verma S, Bhanot S, Yao L et al (1997) Vascular insulin resistance in fructose-hypertensive rats. Eur J Pharmacol 322:R1–R2PubMedGoogle Scholar
  127. 127.
    Vasdev S, Longerich L, Gill V (2004) Prevention of fructose-induced hypertension by dietary vitamins. Clin Biochem 37:1–9PubMedGoogle Scholar
  128. 128.
    Sorrell MF, Tuma DJ (1987) The functional implications of acetaldehyde binding to cell constituents. Ann N Y Acad Sci 492:50–62PubMedGoogle Scholar
  129. 129.
    Bezerra RM, Ueno M, Silva MS et al (2001) A high-fructose diet induces insulin resistance but not blood pressure changes in normotensive rats. Braz J Med Biol Res 34:1155–1160PubMedGoogle Scholar
  130. 130.
    Song J, Hu X, Shi M et al (2004) Effects of dietary fat, NaCl, and fructose on renal sodium and water transporter abundances and systemic blood pressure. Am J Physiol Renal Physiol 287:F1204–F1212PubMedGoogle Scholar
  131. 131.
    Axelsen LN, Lademann JB, Petersen JS et al (2010) Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol Regul Integr Comp Physiol 298:R1560–R1570PubMedGoogle Scholar
  132. 132.
    Paunovic K, Jakovljevic B, Stojanov V (2006) Left ventricular hypertrophy in hypertensive obese women. Acta Cardiol 61:623–629PubMedGoogle Scholar
  133. 133.
    Messerli FH (1982) Cardiovascular effects of obesity and hypertension. Lancet 319: 1165–1168Google Scholar
  134. 134.
    Bouchard-Thomassin AA, Lachance D, Drolet MC et al (2011) A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. Am J Physiol Heart Circ Physiol 300:H125–H134PubMedGoogle Scholar
  135. 135.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMedGoogle Scholar
  136. 136.
    Shaw LJ, Raggi P, Berman DS et al (2006) Coronary artery calcium as a measure of biologic age. Atherosclerosis 188:112–119PubMedGoogle Scholar
  137. 137.
    Lehto S, Niskanen L, Suhonen M et al (1996) Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 16:978–983PubMedGoogle Scholar
  138. 138.
    Zhou YB, Zhang J, Cai Y et al (2012) Insulin resistance induces medial artery calcification in fructose-fed rats. Exp Biol Med 237:50–57Google Scholar
  139. 139.
    Bjorneklett A, Viddal KO, Midtvedt T et al (1981) Intestinal and gastric bypass. Changes in intestinal microecology after surgical treatment of morbid obesity in man. Scand J Gastroenterol 16:681–687PubMedGoogle Scholar
  140. 140.
    Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075PubMedCentralPubMedGoogle Scholar
  141. 141.
    Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedGoogle Scholar
  142. 142.
    Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223PubMedCentralPubMedGoogle Scholar
  143. 143.
    Sonnenburg ED, Zheng H, Joglekar P et al (2010) Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141: 1241–1252PubMedCentralPubMedGoogle Scholar
  144. 144.
    Baraona E, Julkunen R, Tannenbaum L et al (1986) Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology 90:103–110PubMedGoogle Scholar
  145. 145.
    Koivisto VA, Yki-Jarvinen H (1993) Fructose and insulin sensitivity in patients with type 2 diabetes. J Intern Med 233:145–153PubMedGoogle Scholar
  146. 146.
    Crapo PA, Kolterman OG (1984) The metabolic effects of 2-week fructose feeding in normal subjects. Am J Clin Nutr 39:525–534PubMedGoogle Scholar
  147. 147.
    Hollenbeck CB (1993) Dietary fructose effects on lipoprotein metabolism and risk for coronary artery disease. Am J Clin Nutr 58:800S–809SPubMedGoogle Scholar
  148. 148.
    Stevens HC (2012) Fructose impacts on gut microbiota and obesity by A.N. Payne et al. Obes Rev 13:1182–1183, 1 author response 1184–1185PubMedGoogle Scholar
  149. 149.
    Teff KL, Elliott SS, Tschop M et al (2004) Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89:2963–2972PubMedGoogle Scholar
  150. 150.
    Lingelbach LB, McDonald RB (2000) Description of the long-term lipogenic effects of dietary carbohydrates in male Fischer 344 rats. J Nutr 130:3077–3084PubMedGoogle Scholar
  151. 151.
    Alvarez-Suarez JM, Giampieri F, Battino M (2013) Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr Med Chem 20:621–638PubMedGoogle Scholar
  152. 152.
    Johnson RK, Appel LJ, Brands M et al (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120: 1011–1020PubMedGoogle Scholar
  153. 153.
    Sánchez-Lozada LG, Le M, Segal M et al (2008) How safe is fructose for persons with or without diabetes? Am J Clin Nutr 88:1189–1190PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.School of Health, Nursing and MidwiferyUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations