Advertisement

Targeting Matrix Metalloproteinase 2 and 9 for Treatment of Cardiovascular Dysfunction of Diabetes

  • Lokesh Kumar Bhatt
  • Veeranjaneyulu Addepalli
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 9)

Abstract

Cardiovascular complications in the diabetic population are the foremost cause of death and impose a huge economic burden. Despite recent advances in our understanding of diabetic complications, there is an unmet need for treatment. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that are involved in the remodeling of several components of the extracellular matrix. Upregulation of MMP-2 and MMP-9 in diabetes leads to disruption of extracellular matrix and thus causes complications of diabetes. Matrix metalloproteinase 2 and 9 can be potential targets to treat cardiovascular complications of diabetes.

Keywords

Matrix metalloproteinase 2 Matrix metalloproteinase 9 Extracellular matrix Diabetic cardiovascular complications 

References

  1. 1.
    Rodriguez BL, Abbott RD, Fujimoto W et al (2002) The American Diabetes Association and World Health Organization classifications for diabetes: their impact on diabetes prevalence and total and cardiovascular disease mortality in elderly Japanese-American men. Diabetes Care 25:951–955CrossRefPubMedGoogle Scholar
  2. 2.
    American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1):S62–S67CrossRefGoogle Scholar
  3. 3.
    Zhang PZX, Brown JB, Vistisen D et al (2009) Economic impact of diabetes. In: Diabetes Atlas, International Diabetes Federation (IDF), 4th edn. http://www.idf.org/sites/default/files/Economic_impact_of_Diabetes.pdf
  4. 4.
    Leal J, Gray AM, Clarke PM (2009) Development of life-expectancy tables for people with type 2 diabetes. Eur Heart J 30:834–839CrossRefPubMedGoogle Scholar
  5. 5.
    vanDieren S, Beulens JW, van der Schouw YT et al (2010) The global burden of diabetes and its complications: an emerging pandemic. EurJ Cardiovasc Prev Rehabil 17(Suppl 1):S3–S8CrossRefGoogle Scholar
  6. 6.
    Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625CrossRefPubMedGoogle Scholar
  7. 7.
    Larkin ME, Lorenzi GM, Bayless M et al (2012) Evolution of the study coordinator role: the 28-year experience in Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC). Clin Trials 9:418–425CrossRefPubMedGoogle Scholar
  8. 8.
    Genuth S (2008) The UKPDS and its global impact. Diabet Med 25(Suppl 2):57–62CrossRefPubMedGoogle Scholar
  9. 9.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRefPubMedGoogle Scholar
  10. 10.
    Yabluchanskiy A, Li Y, Chilton RJ, Lindsey ML (2013) Matrix metalloproteinases: drug targets for myocardial infarction. Curr Drug Targets 14:276–286PubMedGoogle Scholar
  11. 11.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMedGoogle Scholar
  12. 12.
    Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87:5578–5582PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kleifeld O, Van den Steen PE, Frenkel A et al (2002) Structural characterization of the catalytic active site in the latent and active natural gelatinase B from human neutrophils. J Biol Chem 275:34335–34343CrossRefGoogle Scholar
  14. 14.
    Hu J, Van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498CrossRefPubMedGoogle Scholar
  15. 15.
    Galis Z, Muszynski M, Sukhova GK et al (1995) Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann N Y Acad Sci 748:501–507CrossRefPubMedGoogle Scholar
  16. 16.
    Uzui H, Harpf A, Liu M et al (2002) Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque. Role of activated macrophages and inflammatory cytokines. Circulation 106:3024–3030CrossRefPubMedGoogle Scholar
  17. 17.
    Jones CB, Sane DC, Herrington DM (2003) Matrix metalloproteinases: a review of their structure and role in acute coronary syndromes. Cardiovasc Res 59:812–823CrossRefPubMedGoogle Scholar
  18. 18.
    Galis ZS, Khatri J (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis. The good, the bad and the ugly. Circ Res 90:251–262PubMedGoogle Scholar
  19. 19.
    Negase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494CrossRefGoogle Scholar
  20. 20.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res 92:827–839CrossRefPubMedGoogle Scholar
  21. 21.
    Knox JB, Sukhova GK, Whittermore AD et al (1997) Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95: 205–212CrossRefPubMedGoogle Scholar
  22. 22.
    Death A, Fisher EJ, McGrath KCY et al (2003) High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis 168:263–269CrossRefPubMedGoogle Scholar
  23. 23.
    Uemura S, Matsushita H, Li W et al (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity. Role of oxidative stress. Circ Res 88:1291–1298CrossRefPubMedGoogle Scholar
  24. 24.
    Benbow U, Brinckerhoff C (1997) The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 15:519–526CrossRefPubMedGoogle Scholar
  25. 25.
    Wilmer W, Cosio F (1996) DNA binding of activator protein-1 is increased in human mesangial cells cultured in high glucose concentrations. Kidney Int 53:1172–1181CrossRefGoogle Scholar
  26. 26.
    Pascal M, Knott R, Forrester J (1996) Glucose mediated regulation of transforming growth factor beta in human retinal endothelial cells. Biochem Soc Trans 24:228SPubMedGoogle Scholar
  27. 27.
    Jormso S, Ye S, Moritz J et al (2000) Allele-specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circ Res 86:998–1003CrossRefGoogle Scholar
  28. 28.
    Yan SF, Ramasamy R, Naka Y et al (2003) Glycation, inflammation and RAGE. A scaffold for the macrovascular complications of diabetes and beyond. Circ Res 93:1159–1169CrossRefPubMedGoogle Scholar
  29. 29.
    Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death. A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275CrossRefPubMedGoogle Scholar
  30. 30.
    Cipollone F, Pontera C, Pini B et al (2001) Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E2-dependent plaque instability. Circulation 104:921–927CrossRefPubMedGoogle Scholar
  31. 31.
    Ito H, Duxbury M, Benoit E et al (2004) Fibronectin-induced COX-2 mediates MMP-2 expression and invasiveness of rhabdomyosarcoma. Biochem Biophys Res Commun 318:594–600CrossRefPubMedGoogle Scholar
  32. 32.
    Cha HS, Ahn KS, Jeon CH et al (2004) Inhibitory effect of cyclo-oxygenase-2 inhibitor on the production of matrix metalloproteinases in rheumatoid fibroblast-like synoviocytes. Rheumatol Int 24:207–211CrossRefPubMedGoogle Scholar
  33. 33.
    Kalogeropoulou K, Mortzos G, Migdalis I et al (2002) Carotid atherosclerosis in type 2 diabetes mellitus: potential role of endothelin-1, lipoperoxides, and prostacyclin. Angiology 53: 279–285CrossRefPubMedGoogle Scholar
  34. 34.
    Tsuruda T, Costello-Boerrigter LC, Burnett JC Jr (2004) Matrix metalloproteinases: pathways of induction by bioactive molecules. Heart Fail Rev 9:53–61CrossRefPubMedGoogle Scholar
  35. 35.
    Roy-Beaudry M, Martel-Pelletier J, Pelletier JP et al (2003) Endothelin 1 promotes osteoarthritic cartilage degradation via matrix metalloprotease 1 and matrix metalloprotease 13 induction. Arthritis Rheum 48:2855–2864CrossRefPubMedGoogle Scholar
  36. 36.
    Derosa G, Avanzini MA, Geroldi D et al (2004) Matrix metalloproteinase-2 may be a marker of microangiopathy in children and adolescents with type 1 diabetes mellitus. Diabetes Care 27:273–274CrossRefPubMedGoogle Scholar
  37. 37.
    Das A, McGuire PG, Eriqat C et al (1999) Human diabetic neovascular membranes contain high levels of urokinase and metalloproteinase enzymes. Invest Ophthalmol Vis Sci 40:809–813PubMedGoogle Scholar
  38. 38.
    Saltzmann J, Limb GA, Khaw PT et al (2000) Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative retinopathy. Br J Ophthalmol 84: 1091–1096CrossRefGoogle Scholar
  39. 39.
    McLennan SV, Death AK, Fisher EJ et al (1999) The role of the mesangial cell and its matrix in the pathogenesis of diabetic nephropathy. Cell Mol Biol 45:123–135PubMedGoogle Scholar
  40. 40.
    Friedman EA (1999) Advanced glycosylated end products and hyperglycemia in the pathogenesis of diabetic complications. Diabetes Care 22:B65–B71CrossRefPubMedGoogle Scholar
  41. 41.
    McLennan SV, Fisher EJ, Martell SKY et al (2000) Effects of glucose on matrix metalloproteinases and plasmin activity in mesangial cells: possible role in diabetic nephropathy. Kidney Int 58(Suppl 77):S81–S87CrossRefGoogle Scholar
  42. 42.
    Phillips AO, Steadman R, Morrissey K et al (1997) Exposure of human renal proximal cells to glucose leads to accumulation of type IV collagen and fibrinogen by decreased degradation. Kidney Int 52:973–984CrossRefPubMedGoogle Scholar
  43. 43.
    McLennan SV, Martell SKY, Yue DK (2002) Effects of mesangium glycation on matrix metalloproteinase activities. Possible role in diabetic nephropathy. Diabetes 51:2612–2618CrossRefPubMedGoogle Scholar
  44. 44.
    McLennan SV, Fisher EJ, Yue DK et al (1994) High glucose concentration causes a decrease in mesangium degradation. A factor in the pathogenesis of diabetic nephropathy. Diabetes 43:1041–1045CrossRefPubMedGoogle Scholar
  45. 45.
    Vu TH, Shipley JM, Bergers G et al (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Abaci A, Oguzhan A, Kahraman S et al (1999) Effect of diabetes mellitus on coronary collateral vessels. Circulation 99:2239–2242CrossRefPubMedGoogle Scholar
  47. 47.
    Rivard A, Silver M, Chen D et al (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 154:355–363CrossRefPubMedGoogle Scholar
  48. 48.
    Tamarat R, Silvestre JS, Hujiberts M et al (2003) Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc Natl Acad Sci U S A 100:8555–8560PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Taniyama Y, Morishita R, Hiraoka K et al (2001) Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model. Molecular mechanisms of delayed angiogenesis in diabetes. Circulation 104:2344–2350CrossRefPubMedGoogle Scholar
  50. 50.
    McCarthy MJ, Loftus IM, Thompson MM et al (1999) Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 30:261–268CrossRefPubMedGoogle Scholar
  51. 51.
    Galis ZS, Sukhova GK, Lark MW et al (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 90:775–778Google Scholar
  52. 52.
    Brown DL, Hibbs MS, Kearney M et al (1995) Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Circulation 91:2125–2131CrossRefPubMedGoogle Scholar
  53. 53.
    Loftus IM, Naylor AR, Goodall S et al (2000) Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke 31:40–47CrossRefPubMedGoogle Scholar
  54. 54.
    Sukhova GK, Schonbeck U, Rabkin E et al (1999) Evidence for increased collagenolysis from interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99:2503–2509CrossRefPubMedGoogle Scholar
  55. 55.
    Herman MP, Sukhova GK, Libby P et al (2001) Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma. Circulation 104:1899–1904CrossRefPubMedGoogle Scholar
  56. 56.
    Halpert I, Sire UI, Roby JD et al (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A 93:9748–9753PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Hirashiki A, Yamada Y, Murase Y et al (2003) Association of gene polymorphisms with coronary artery disease in low- or high-risk subjects defined by conventional risk factors. J Am Coll Cardiol 42:1429–1437CrossRefPubMedGoogle Scholar
  58. 58.
    Whalting C, McPheat W, Hurt-Camejo E (2004) Matrix management assigning different role of MMP-2 and MMP-9 in vascular remodeling. Arterioscler Thomb Vasc Biol 24:10–11CrossRefGoogle Scholar
  59. 59.
    Lottus JM, Naylor AR, Bell PRF (2002) Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg 89:680–694CrossRefGoogle Scholar
  60. 60.
    Lewandowski KC, Banach E, Bieńkiewicz M, Lewiński A (2011) Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia. Arch Med Sci 7:294–303PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Ravn HB, Falk E (1999) Histopathology of plaque rupture. Cardiol Clin 17:263–270CrossRefPubMedGoogle Scholar
  62. 62.
    Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Spinale FG, Coker ML, Heung LJ et al (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102:1944–1949CrossRefPubMedGoogle Scholar
  64. 64.
    Tyagi SC, Campbell SE, Reddy HK et al (1996) Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155:13–21CrossRefPubMedGoogle Scholar
  65. 65.
    Sun M, Dawood F, Wen WH et al (2004) Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 110:3221–3228CrossRefPubMedGoogle Scholar
  66. 66.
    Inokubo Y, Hanada H, Ishizaka H et al (2001) Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 141:211–217CrossRefPubMedGoogle Scholar
  67. 67.
    Hojo Y, Ikeda U, Ueno S et al (2001) Expression of matrix metalloproteinases in patients with acute myocardial infarction. Jpn Circ J 65:71–75CrossRefPubMedGoogle Scholar
  68. 68.
    Hirohata S, Kusachi S, Murakami M et al (1997) Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction. Heart 78:278–284PubMedGoogle Scholar
  69. 69.
    Carmo M, Colombo L, Bruno A et al (2002) Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 23:543–549CrossRefPubMedGoogle Scholar
  70. 70.
    Duca L, Floquet N, Alix AJ et al (2004) Elastin as a matrikine. Crit Rev Oncol Hematol 49:235–244CrossRefPubMedGoogle Scholar
  71. 71.
    Pasterkamp G, Schoneveld AH, Hijnen DJ et al (2000) Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2, and 9 in the human coronary artery. Atherosclerosis 150:245–253CrossRefPubMedGoogle Scholar
  72. 72.
    Sun M, Opavsky MA, Stewart DJ et al (2003) Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: regulation by cytokines. Circulation 107:1046–1052CrossRefPubMedGoogle Scholar
  73. 73.
    Kai H, Ikeda H, Yasukawa H et al (1998) Peripheral blood levels of matrix metalloproteinases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32:368–372CrossRefPubMedGoogle Scholar
  74. 74.
    Kexin XU, Shukun HOU, Zhijun DU (2002) Prognostic value of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in bladder carcinoma. Chin Med J 115:743–745Google Scholar
  75. 75.
    Suzuki D (1998) Metalloproteinases in the pathogenesis of diabetic nephropathy. Nephron 80:125–133CrossRefPubMedGoogle Scholar
  76. 76.
    Bhatt LK, Veeranjaneyulu A (2012) A therapeutic approach to treat cardiovascular dysfunction of diabetes. Exp Toxicol Pathol 64:847–853CrossRefPubMedGoogle Scholar
  77. 77.
    Bhatt LK, Veeranjaneyulu A (2011) Minocycline with aspirin: an approach to attenuate diabetic nephropathy in rats. Ren Fail 33:72–78CrossRefGoogle Scholar
  78. 78.
    Vlassara H, Striker LJ, Teichberg S (1994) Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci U S A 91:11704–11708PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Senatorski G, Paczek L, Sulowicz W (1998) Urine activity of cathepsin B, collagenase and urine excretion of TGF-beta 1 and fibronectin in membranous glomerulonephritis. Res Exp Med (Berl) 198:199–206CrossRefGoogle Scholar
  80. 80.
    Zaoui P, Cantin JF, Alimardani-Bessette M (2000) Role of metalloproteases and inhibitors in the occurrence and progression of diabetic renal lesions. Diabetes Metab 26(Suppl 4):25–29PubMedGoogle Scholar
  81. 81.
    Fogo AB (1999) Current concepts in glomerulosclerosis. Am J Kidney Dis 34:LIV–LVICrossRefGoogle Scholar
  82. 82.
    Kurogi Y (2003) Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Med Res Rev 23:15–31CrossRefPubMedGoogle Scholar
  83. 83.
    Death AK, Nakhla S, McGrath KC et al (2002) Nitroglycerin upregulates matrix metalloproteinase expression by human macrophages. J Am Coll Cardiol 39:1943–1950CrossRefPubMedGoogle Scholar
  84. 84.
    Tyagi SC, Kumar S, Katwa L (1997) Differential regulation of extracellular matrix metalloproteinase and tissue inhibitor by heparin and cholesterol in fibroblast cells. J Mol Cell Cardiol 29:391–404CrossRefPubMedGoogle Scholar
  85. 85.
    Eickelberg O, Roth M, Mussmann R et al (1999) Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL-6 and NF-KB in primary human vascular smooth muscle cells. Circulation 99:2276–2282CrossRefPubMedGoogle Scholar
  86. 86.
    Papakonstantinou E, Roth M, Kokkas B et al (2001) Losartan inhibits the angiotensin II-induced modifications on fibrinloysis and matrix deposition by primary human vascular smooth muscle cells. J Cardiovasc Pharmacol 38:715–728CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PharmacologyDr. BhanubenNanavati College of PharmacyMumbaiIndia
  2. 2.Department of Pharmacology, SPP School of Pharmacy and Technology ManagementSVKM’s NMIMSMumbaiIndia

Personalised recommendations