Skip to main content

The Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Axis: A Potential Target for Treating Diabetic Cardiovascular Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 9))

Abstract

Activation of the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin type-1 receptor (AT1) axis in the heart and vasculature plays an important role in the development of diabetic complications. The angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis has been shown to oppose the actions of Ang II. Our results have shown that chronic treatment with Ang-(1-7) led to correction of the altered responses to norepinephrine or endothelin-1 and carbachol in the mesenteric bed, carotid, and renal arteries of diabetic rats and improved recovery of left ventricular function from 40 min of global ischemia. We showed that the beneficial effects of Ang-(1-7) on the diabetic vasculature involve inhibition of the detrimental EGFR/ERK1/2/p38MAP kinase pathway. Ang-(1-7) treatment inhibited cardiac NADPH oxidase (NOX) and cardiac nuclear factor-κB (NF-κB) activity and also suppressed the expression of several pro-inflammatory genes involved in the NF-κB signaling pathway, including complement component 3 (C3), interleukin 1-beta (Il-1β), interleukin 6 (Il-6), NACHT-containing protein (Nalp12), and caspase 1 (Casp1). We conclude that activation of the Ang-(1-7)-mediated signal transduction pathway appears to be an important therapeutic strategy to reduce cardiovascular events in diabetic patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564

    Article  PubMed  Google Scholar 

  2. Scully T (2012) Diabetes in numbers. Nature 485:S2–S3

    Article  CAS  PubMed  Google Scholar 

  3. Whiting DR, Guariguata L, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321

    Article  PubMed  Google Scholar 

  4. Von-Lueder TG, Krum H (2012) RAAS inhibitors and cardiovascular protection in large scale trials. Cardiovasc Drugs Ther 2:171–179

    Google Scholar 

  5. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    Article  CAS  PubMed  Google Scholar 

  6. Patel VB, Bodiga S, Basu R et al (2012) Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res 110:1322–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Aneja A, Tang WH, Bansilal S (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757

    Article  PubMed  Google Scholar 

  8. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  9. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567

    Article  CAS  PubMed  Google Scholar 

  10. Benter IF, Diz DI, Ferrario CM (1993) Cardiovascular actions of angiotensin-(1-7). Peptides 14:679–684

    Article  CAS  PubMed  Google Scholar 

  11. Benter IF, Diz DI, Morris M, Ferrario CM (1995) Antihypertensive actions of angiotensin-(1-7) in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 269:H313–H319

    CAS  Google Scholar 

  12. Benter IF, Diz DI, Ferrario CM (1995) Pressor and reflex sensitivity is altered in spontaneously hypertensive rats treated with angiotensin-(1-7). Hypertension 26:1138–1144

    Article  CAS  PubMed  Google Scholar 

  13. Benter IF, Yousif MHM, Anim JT et al (2006) Angiotensin-(1-7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats-treated with L-NAME. Am J Physiol Heart Circ Physiol 290:H684–H691

    Article  CAS  PubMed  Google Scholar 

  14. Crackower MA, Sarao R, Oudit GY et al (2002) Angiotensin converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828

    Article  CAS  PubMed  Google Scholar 

  15. Tikellis C, Pickering R, Tsorotes D (2012) Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clin Sci (Lond) 123:519–529

    CAS  Google Scholar 

  16. Kassiri Z, Zhong J, Guo D et al (2009) Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail 2:446–455

    Article  CAS  PubMed  Google Scholar 

  17. Stewart JA, Lazartigues E, Lucchesi PA (2008) The angiotensin converting enzyme 2/Ang-(1-7) axis in the heart: a role for MAS communication? Circ Res 103:1197–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nakamura K, Koibuchi N, Nishimatsu A et al (2008) Candesartan ameliorates cardiac dysfunction observed in angiotensin-converting enzyme 2-deficient mice. Hypertens Res 31: 1953–1961

    Article  CAS  PubMed  Google Scholar 

  19. Tallant EA, Clark MA (2003) Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7). Hypertension 42:574–579

    Article  CAS  PubMed  Google Scholar 

  20. Tallant EA, Ferrario CM, Gallagher PE (2005) Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the Mas receptor. Am J Physiol Heart Circ Physiol 289:H1560–H1566

    Article  CAS  PubMed  Google Scholar 

  21. Santos RAS, Simões e Silva AC, Maric C et al (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  CAS  PubMed  Google Scholar 

  22. Santos RAS, Ferreira AJ, Pinheiro SV et al (2005) Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Invest Drugs 14:1019–1031

    Article  CAS  Google Scholar 

  23. Santos RAS, Castro CH, Gava E et al (2006) Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor MAS knockout mice. Hypertension 47:996–1002

    Article  CAS  PubMed  Google Scholar 

  24. Pinheiro SV, Simões e Silva AC, Sampaio WO et al (2004) Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension 44:490–496

    Article  CAS  PubMed  Google Scholar 

  25. Benter IF, Yousif MH, Cojocel C et al (2007) Angiotensin-(1-7) prevents diabetes-induced cardiovascular dysfunction. Am J Physiol Heart Circ Physiol 292:H666–H672

    Article  CAS  PubMed  Google Scholar 

  26. Akhtar S, Benter IF (2013) The role of epidermal growth factor receptor in diabetes-induced cardiac dysfunction. Bioimpacts 3:5–9

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12:104–117

    Article  CAS  PubMed  Google Scholar 

  28. Higuchi S, Ohtsu H, Suzuki H et al (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 112:417–428

    Article  CAS  Google Scholar 

  29. Smith NJ (2011) Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy. Hypertension 57:973–980

    Article  CAS  PubMed  Google Scholar 

  30. Akhtar S, Yousif MH, Benter IF (2012) Angiotensin-(1-7) inhibits epidermal growth factor receptor transactivation via a Mas receptor-dependent pathway. Br J Pharmacol 165: 1390–1400

    Article  CAS  PubMed  Google Scholar 

  31. Benter IF, Yousif MH, Griffiths SM et al (2005) Epidermal growth factor receptor tyrosine kinase-mediated signalling contributes to diabetes-induced vascular dysfunction in the mesenteric bed. Br J Pharmacol 145:829–836

    Article  CAS  PubMed  Google Scholar 

  32. Benter IF, Yousif MH, Hollins AJ et al (2005) Diabetes-induced renal vascular dysfunction is normalized by inhibition of epidermal growth factor receptor tyrosine kinase. J Vasc Res 42:284–291

    Article  CAS  PubMed  Google Scholar 

  33. Benter IF, Benboubetra M, Hollins AJ et al (2009) Early inhibition of EGFR signaling prevents diabetes-induced up-regulation of multiple gene pathways in the mesenteric vasculature. Vasc Pharmacol 51:236–245

    Article  CAS  Google Scholar 

  34. Yousif MH, Benter IF, Akhtar S (2005) The role of tyrosine kinase-mediated pathways in diabetes-induced alterations in responsiveness of rat carotid artery. Auton Autacoid Pharmacol 25:69–78

    Article  CAS  PubMed  Google Scholar 

  35. Belmadani S, Palen DI, Gonzalez-Villalobos RA et al (2008) Elevated epidermal growth factor receptor phosphorylation induces resistance artery dysfunction in diabetic db/db mice. Diabetes 57:1629–1637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Galán M, Kassan M, Choi SK et al (2012) A novel role for epidermal growth factor receptor tyrosine kinase and its downstream endoplasmic reticulum stress in cardiac damage and microvascular dysfunction in type 1 diabetes mellitus. Hypertension 60:71–80

    Article  PubMed  Google Scholar 

  37. Al-Maghrebi M, Benter IF, Diz DI (2009) Endogenous angiotensin-(1-7) reduces cardiac ischemia-induced dysfunction in diabetic hypertensive rats. Pharmacol Res 59:263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Benter IF, Yousif MH, Dhaunsi GS et al (2008) Angiotensin-(1-7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol 28:25–33

    Article  CAS  PubMed  Google Scholar 

  39. Dhaunsi GS, Yousif MH, Akhtar S et al (2010) Angiotensin-(1-7) prevents diabetes-induced attenuation in PPAR-gamma and catalase activities. Eur J Pharmacol 638:108–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Yousif MH, Dhaunsi GS, Benter IF (2012) Characterization of angiotensin-(1-7) effects on the cardiovascular system in an experimental model of type-1 diabetes. Pharmacol Res 66: 269–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Kuwait University Research Sector (MR05/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim F. Benter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benter, I.F., Yousif, M.H.M., Juggi, J.S., Akhtar, S. (2014). The Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Axis: A Potential Target for Treating Diabetic Cardiovascular Disease. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_22

Download citation

Publish with us

Policies and ethics