Origins of Texture Formation

Chapter

Abstract

As we discussed in Chaps. 5 and 6, texture is divided into several classes: single crystal, biaxial, fiber, and random polycrystalline structures. The mechanisms that lead to these different textures are rather complex. They depend on the nature of the substrate (for example, crystalline vs amorphous), substrate temperature, deposition rate, flux energetics, impurities, and deposition geometry. In this chapter, we will provide an overview of some of the most commonly known mechanisms that lead to these different textures. However, in general, fundamental understanding of many of these texture formations is far from complete. Because of the fundamental and technological implications, this is a very rich, exciting area of research, and it likely will continue to be so for many years to come.

Keywords

Migration Anisotropy Zirconia Argon Fluoride 

References

  1. Ayers, J.E.: Heteroepitaxy of Semiconductors-Theory, Growth, and Characterization. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  2. Banerjee, R., Sperling, E.A., Thompson, G.B., Bose, S., Ayyub, P., Fraser, H.L.: Lattice expansion in nanocrystalline niobium thin films. Appl. Phys. Lett. 82(24), 4250–4252 (2003)CrossRefGoogle Scholar
  3. Barna, P.B., Adamik, M.: Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317(1–2), 27–33 (1998)Google Scholar
  4. Bauer, E.: Growth of oriented films on amorphous surfaces. In: Francombe, M.H., Sato, H. (eds.) Single-Crystal films, pp. 43–66. Pergamon Press, The MacMillan Company, New York (1964)Google Scholar
  5. Bollero, A., Andres, M., Garcia, C., de Abajo, J., Gutierrez, M.T.: Morphological, electrical and optical properties of sputtered Mo thin films on flexible substrates. Phys. Status Solidi A 206(3), 540–546 (2009)CrossRefGoogle Scholar
  6. Bradley, R.M., Harper, J.M.E., Smith, D.A.: Theory of thin-film orientation by ion bombardment during deposition. J. Appl. Phys. 60(12), 4160–4164 (1986)CrossRefGoogle Scholar
  7. Brewer, R.T., Atwarer, H.A.: Rapid biaxial texture development during nucleation of MgO thin films during ion beam-assisted deposition. Appl. Phys. Lett. 80(18), 3388–3390 (2002)CrossRefGoogle Scholar
  8. Capper, P., Mauk, M. (ed.): Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials. Wiley Series in Materials for Electronic & Optoelectronic Applications, New York (2007)CrossRefGoogle Scholar
  9. Cha, S.Y., Jang, B.T., Kwak, D.H., Shin, C.H., Lee. H.C.: Iridium thin film as a bottom electrode for high dielectric (Ba, Sr)TiO3 capacitors. Integr. Ferroelectr.17(1–4), 187–195 (1997)CrossRefGoogle Scholar
  10. Chen, L., Lu, T.-M., Wang, G.-C.: Biaxially textured Mo films with diverse morphologies by substrate-flipping rotation. Nanotechnology 22(50), 505701–505707 (2011)CrossRefGoogle Scholar
  11. Chen, L., Lu, T.-M., Wang, G.-C.: Incident flux angle induced crystal texture transformation in nanostructured molybdenum films. J. Appl. Phys. 112, 024303–024308 (2012)CrossRefGoogle Scholar
  12. Chen, L., Wang, G.-C., Lu, T.-M.: Unpublished work (2013)Google Scholar
  13. Chudzik, M.P., Koritala, R.E., Luo, L.P., Miller, D.J., Balachandran, U., Kannewurf, C.R.: Mechanism and processing dependence of biaxial texture development in magnesium oxide thin films grown by inclined-substrate deposition. IEEE Trans. Appl. Superconductivity 11, 3469–3472 (2001)Google Scholar
  14. Davey, J.E., Pankey, T.: Epitaxial GaAs films deposited by vacuum evaporation. J. Appl. Phys. 39, 1941–1948 (1968)CrossRefGoogle Scholar
  15. Drusedau, T.P., Klabunde, F., Viet, P., Hempel, Th.: Turnover of texture in low rate sputter-deposited nanocrystalline molybdenum films. Phys. Stat. Sol. (a) 161, 167–184 (1997)CrossRefGoogle Scholar
  16. Findikoglu, A.T., Choi, W., Matias, V., Holesinger, T.G., Jia, Q.X., Peterson, D.E.: Well-oriented silicon thin films with high carrier mobility in polycrystalline substrates. Adv. Mater. 17, 1527–1531 (2005)Google Scholar
  17. Gaire, C., Clemmer, P.C., Li, H.-F., Parker, T., Snow, P., Bhat, I., Lee, S., Wang, G.-C., Lu, T.-M.: Small angle grain boundary Ge films on biaxial CaF2/glass substrate. J. Cryst. Growth 312, 607–610 (2010a)CrossRefGoogle Scholar
  18. Gaire, C., Snow, P., Chan, T.-L., Yuan, W., Riley, M., Liu, Y., Zhang, S.B., Wang, G.-C., Lu, T.-M.: Morphology and texture evolution of nanostructured CaF2 films on amorphous substrates under oblique incidence flux. Nanotechnology 21, 445701–445709 (2010b)CrossRefGoogle Scholar
  19. Gaire, G., Rao, S., Riley, M., Chen, L., Goyal, A., Lee, S., Bhat, I., Lu, T.-M., Wang, G.-C.: Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition. Thin Solid Films 520, 1862–1865 (2012a)CrossRefGoogle Scholar
  20. Gaire, C., Palazzo, J., Bhat, I., A. Goyal, A., Wang, G.-C., Lu, T.-M.: Low temperature epitaxial growth of Ge on CaF2 buffered cube-textured Ni. J. Cryst. Growth 343, 33–37 (2012b)CrossRefGoogle Scholar
  21. Gladczuk, L., Patel, A., Demaree, J.D., Sosnowski, M.: Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel. Thin Solid Films 476, 295–302 (2005)CrossRefGoogle Scholar
  22. Goyal, A.: Semiconductor-based, large-area, flexible electronic devices. US Patent 7906229 (2011)Google Scholar
  23. Groves, J.R., Li, J.B., Clemens, B.M., LaSalvia, V., Hasoon, F., Branz, H.M., Teplin, C.W.: Biaxially-textured photovoltaic film crystal silicon on ion beam assisted deposition CaF2 seed layers on glass. Energy Environ. Sci. 5, 6905–6908 (2012)Google Scholar
  24. Gunther, K.G.: Aufdampfschichtenaushalbleitenden III-V Verbindungen. Z. Naturforsch. 13a, 1081–1089 (1958)Google Scholar
  25. Harris, J.J., Joyce, B.A., Dobson, P.J.: Oscillation in the surface structure of Sn-doped GaAs during growth by MBE. Surf. Sci. 103, L90–L96 (1981)CrossRefGoogle Scholar
  26. Hawkeye, M.M., Brett, M.J.: Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007)Google Scholar
  27. Hazra, D., Datta, S., Mondal, M., Ghatak, J., Satyam, P.V., Gupta, A.K.: Thickness dependent lattice expansion in nanogranular Nb thin films. J. Appl. Phys. 103, 103535-1-5 (2008)CrossRefGoogle Scholar
  28. Hecq, M., Hecq, A.: Oxygen induced preferred orientation of DC sputtered platinum. J. Vac. Sci. Technol. 18(2), 219–222 (1981)Google Scholar
  29. Ichimiya, A., Cohen, P.I.: Reflection High-Energy Electron Diffraction. Cambridge University Press, London (2004)CrossRefGoogle Scholar
  30. Ino, K., Shinohara, T., Ushiki, T., Ohmi, T.: Ion energy, ion flux, and ion species effects on crystallographic and electrical properties of sputter-deposited Ta thin films. J. Vac. Sci. Technol. 15, 2627–2635 (1997)Google Scholar
  31. Juneja, J.S., Wang P.-I., Karabacak, T.: Dielectric barriers, pore sealing, and metallization. Thin Solid Films 504, 239–242 (2006)CrossRefGoogle Scholar
  32. Karabacak, T., Mallikarjunan, A., Singh, J.P., Ye, D.-X., Wang, G.-C., Lu, T.-M.: β-phase tungsten nanorod formation by oblique-angle sputter deposition. Appl. Phys. Lett. 83(15), 3096–3098 (2003)CrossRefGoogle Scholar
  33. Karpenko, O.P., Bilello, J.C., Yalisove, S.M.: Growth anisotropy and self-shadowing: a model for the development of in-plane texture during polycrystalline thin-film growth. J. Appl. Phys. 76(8), 4610–4617 (1994)CrossRefGoogle Scholar
  34. Krishnan, R., Riley, M., Lee, S., Lu, T.-M.: Vertically aligned biaxially textured molybdenum thin films. J. Appl. Phys. 110, 064311-1-5 (2011)CrossRefGoogle Scholar
  35. Lakhtakia, A., Messier, R.: Sculptured Thin Films: Nanoengineered Morphology and Optics. SPIE Press, Bellingham (2005)CrossRefGoogle Scholar
  36. Ledentsov, N.N.: Growth Processes and Surface Phase Equilibria in Molecular Beam Epitaxy. Springer, New York (1999)Google Scholar
  37. Li, H.-F., Parker, T., Tang, F, Wang, G.-C., Lu, T.-M., Lee, S.: Biaxially oriented CaF2 films on amorphous substrates. J. Crystal Growth 310, 3610–3614 (2008)CrossRefGoogle Scholar
  38. Lichter, S., Chen, J.: Model for columnar microstructure of thin solid films. Phys. Rev. Lett. 56, 1396–1399 (1986)CrossRefGoogle Scholar
  39. Mahieu, S., Ghekiere, P., Depla, D, De Gryse, R.: Biaxial alignment in sputter deposited thin films. Thin Solid Films 515, 1229–1249 (2006a)CrossRefGoogle Scholar
  40. Mahieu, S., Ghekiere, P., Depla, D., De Gryse, R., Lebedev, O.I., van Tendeloo, G.: Mechanism of in-plane alignment in magnetron sputtered biaxially aligned yttria-stabilized zirconia. J. Cryst. Growth 290, 271–279 (2006b)Google Scholar
  41. Malhotra, A.K., Whitacre, J.F., Zhao, Z.B., Hershberger, J., Yalisove, S.M., Bilello, J.C.: An in situ/ex situ X-ray analysis system for thin sputtered films. Surf. Coat. Tech. 110, 105–110 (1998)Google Scholar
  42. Marot, L., De Temmerman, G., Thommen, V., Mathys, D., Oelhafen, P.: Characterization of magnetron sputtered rhodium films for reflective coatings. Surf. Coat. Tech. 202(13), 2837–2843 (2008)Google Scholar
  43. Martin, F., Muralt, P., Dubois, M.-A.: Process optimization for the sputter deposition of molybdenum thin films as electrode for AlN thin films. J. Vac. Sci. Technol. A 24(4), 946–952 (2006)Google Scholar
  44. Meakin, P.: Fractal scaling in thin film condensation and material surfaces. Phys. Rev. A 38, 994–1004 (1988)CrossRefGoogle Scholar
  45. Messier, R., Giri, A.P., Roy, R.A.: Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 2, 500–503 (1984)Google Scholar
  46. Mirica, E., Kowach, G., Du, H.: Modified structure zone model to describe the morphological evolution of ZnO thin films deposited by reactive sputtering. Cryst. Growth Des. 4, 157–159 (2004)CrossRefGoogle Scholar
  47. Movchan, B.A., Demchishin A.V.: Investigation of the structure and properties of thick vacuum- deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide. Phys. Met. Metallogr. 28, 653–660 (1969)Google Scholar
  48. Narayan, J., Larson, B.C.: Domain epitaxy: a unified paradigm for thin film growth. J. Appl. Phys. 93, 278–285 (2003)CrossRefGoogle Scholar
  49. Nath, S.K., Dhawan, R., Rai, S., Lodha, G.S., Sokhey, K.J.S.: Structural and superconducting properties of ion beam sputtered Nb thin films and Nb/Cu bilayers. Physica C: Supercond. Appl. 472, 21–28 (2012)Google Scholar
  50. Nieuwenhuizen, J.M., Haanstra, H.B.: Microfractography of thin films. Philips Tech. Rev. 27, 87–91 (1966)Google Scholar
  51. Olmstead, M.A.: Thin Films: Heteroepitaxial Systems. World Scientific, Singapore (1999)Google Scholar
  52. Paranthaman, M.P., Izumi, T.: High performance YBCO-coated superconductor wires. MRS Bulletin 29(8), 533–537 (2004)CrossRefGoogle Scholar
  53. Patel, A., Gladczuk, L., Singh Paur, C., Sosnowski, M.: Sputter-deposited bcc tantalum on steel with the interfacial tantalum nitride layer. Mater. Res. Soc. Symp. Proc. 697, 147–152 (2002)Google Scholar
  54. Rossnagel, S.M., Noyan, I.C., Cabral, C. J.: Phase transformation of thin sputter-deposited tungsten films at room temperature. J. Vac. Sci. Technol. B 20(5), 2047–2051 (2002)Google Scholar
  55. Selvamanickam, V., Sambandam, S., Sundaram, A., Lee, S., Rar, A., Xiong, X., Alemu, A., Boney, C., Freundlich, A: Germanium films with strong in-plane and out-of-plane texture on flexible, randomly textured metal substrates. J. Cryst. Growth 311, 4553–4557 (2009)CrossRefGoogle Scholar
  56. Shen, Y.G., Mai, Y.W.: Influences of oxygen on the formation and stability of A15 β-W thin films. Mat. Sci. Eng. A-Struct. 284(1–2), 176–183 (2000)CrossRefGoogle Scholar
  57. Slaughter, J.M., Schulze, D.W., Hills, C.R., Mirone, A., Stalio, R., Watts, R.N., Tarrio, C., Lucatorto, T.B., Krumrey, M., Mueller, P., Falco, C.M.: Structure and performance of SiMo multilayer mirrors for the extreme ultraviolet. J. Appl. Phys. 76(4), 2144–2156 (1994)CrossRefGoogle Scholar
  58. Scofield, J.H., Duda, A., Albin, D., Ballard, B.L., Predecki, P.K.: Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 260(1), 26–31 (1995)CrossRefGoogle Scholar
  59. Stearns, D.G., Rosen, R.S., Vernon, S.P.: Fabrication of high-reflectance Mo-Si multilayer mirrors by planar magnetron sputtering. J. Vac. Sci. Technol. A 9(5), 2662–2669 (1991)Google Scholar
  60. Tanto, B., Ten Eyck, G., Lu, T.-M.: A model for column angle evolution during oblique angle deposition. J. Appl. Phys. 108, 026107-1-3 (2010)CrossRefGoogle Scholar
  61. Tait, R.N., Smy, T., Brett, M.J.: Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196–201 (1993)CrossRefGoogle Scholar
  62. Teplin, C.W., Paranthaman, M.P., Fanning, T.R., Alberi, K., Heatherly, L., Wee, S.H., Kim, K., List, F.A., Pineau, J., Bornstein, J., Bowers, K., Lee, D.F., Cantoni, C., Hane, S., Schroeter, P., Young, D.L., Iwaniczko, E., Jones, K.M., Branz H.M.: Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive crystal silicon photovoltaics. Energy Environ. Sci. 4, 3346–3350 (2011)Google Scholar
  63. Thornton, J.A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666–670 (1974)Google Scholar
  64. van der Drift, A.: Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Repts. 22, 267–288 (1967)Google Scholar
  65. Venables, J.A.: Introduction to Surface and Thin Film Processes. Cambridge University Press, London (2000)CrossRefGoogle Scholar
  66. Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., Hammond, R.H.: Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stablized-zirconia. Appl. Phys. Lett. 71, 2955–2957 (1997)CrossRefGoogle Scholar
  67. Wee, S.H., Cantoni, C., Fanning, T.R., Teplin, C.W., Bogorin, D.F., Bornstein, J., Bowers, K., Schroeter, P., Hasoon, F., Branz, H.M., Paranthaman, M.P., Goyal, A.: Heteroepitaxial film silicon solar cell grown on Ni-W Foils. Energy Environ. Sci. 5, 6052–6056 (2012)Google Scholar
  68. Weerasekera, I.A., Shah, S.I., Baxter, D.A., Unruh, K.M.: Structure and stability of sputter deposited beta-tungsten thin films. Appl. Phys. Lett. 64, 3231–3233 (1994)CrossRefGoogle Scholar
  69. Whitacre, J.F., Rek, Z.U., Bilello, J.C., Yalisove, S.M.: Surface roughness and in-plane texturing in sputtered thin films. J. Appl. Phys. 84(3), 1346–1353 (1998)CrossRefGoogle Scholar
  70. Xu, Y., Lei, C.H., Ma, B., Evans, H., Efstathiadis, H., Rane, M., Massey, M., Balachandran, U., Bhattacharya, R.: Growth of textured MgO through e-beam evaporation and inclined substrate deposition. Supercond. Sci. Technol. 19, 835–843 (2006)Google Scholar
  71. Ye, D.-X., Lu, T.-M.: Ballistic aggregation on two-dimensional arrays of seeds with oblique incident flux: growth model for amorphous Si on Si. Phys. Rev. B 76, 235402-1-8 (2007)CrossRefGoogle Scholar
  72. Yu, L.S., Harper, J.M.E., Cuomo, J.J., Smith, D.A.: Alignment of thin films by glancing angle ion bombardment during deposition. Appl. Phys. Lett. 47(9), 932–933 (1985)CrossRefGoogle Scholar
  73. Yuan, W., Tang, F., Li, H.-F., Parker, T., LiCausi, N., Lu, T.-M., Bhat, I., Wang, G.-C., Lee, S.: Biaxial CdTe/CaF2 films growth on amorphous surface. Thin Solid Films 517, 6623–6628 (2009)CrossRefGoogle Scholar
  74. Zhao, Y.-P., Wang, G.-C., Lu, T.-M.: Characterization of Amorphous and Crystalline Rough Surface—Principles and Applications. Academic Press, New York (2001)Google Scholar
  75. Zhu, H., Cao, W., Larsen, G.K., Toole, R., Zhao, Y.-P.: Tilting angle of nanocolumnar films fabricated by oblique angle deposition. J. Vac. Sci. Technol. B 30, 030606-1-4 (2012)Google Scholar
  76. Zubarev, E.N., Kondratenko, V.V., Pershyn, Y.P., Sevryukova, V.A.: Growth and crystallization of molybdenum layers on amorphous silicon. This Solid Films 520, 314–318 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dept of Phys., Applied Phys., and Astro.Rensselaer Polytechnic InstituteTroyUSA
  2. 2.Dept. of Phys., Applied Phys., and AstroRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations