Advertisement

Secondary Ion Mass Spectrometry

Chapter

Abstract

This chapter will introduce the analyst to secondary ion mass spectrometry (SIMS). Ion beam sputtering, instrumentation, analytical considerations, and actual analyses with mass spectra, depth profiles, and ion imaging will be discussed from the perspective of the instrument user. The analytical considerations will include static and dynamic SIMS, mass resolution, and quantitative analysis. Analyses will include examples of significant issues in depth profiling such as depth resolution, dynamic range, detection limits, crater topography, crystal orientation, and matrix effects. As this book is focusing on a multidisciplinary approach to surface analysis, examples of how SIMS interacts with the analytical techniques of SEM, TEM, AFM, RBS, XRD, and AES/ESCA have been noted throughout this chapter.

Keywords

Primary Beam Depth Resolution Magnetic Sector Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sigmund P (1981) Sputtering by particle bombardment I. Top Appl Phys 47:9–71. doi: 10.1007/3540105212_7 CrossRefGoogle Scholar
  2. 2.
    Harrison DE, Kelly PW, Garrison BJ, Winograd N (1978) Low energy ion impact phenomena on single crystal surfaces. Surf Sci 76:311–322. doi: 10.1016/0039-6028(78)90100-0 CrossRefGoogle Scholar
  3. 3.
    Winograd N, Garrison B, Harrison DE (1978) Angular distributions of ejected particles from ion-bombarded clean and reacted single-crystal surfaces. Phys Rev Lett 41:1120–1123. doi: 10.1103/PhysRevLett.41.1120 CrossRefGoogle Scholar
  4. 4.
    Williams P (1979) The sputtering process and sputtered ion emission. Surf Sci 90:588–634. doi: 10.1016/0039-6028(79)90363-7 CrossRefGoogle Scholar
  5. 5.
    Garrison BJ, Winograd N, Harrison DE (1979) Ejection of molecular clusters from ion-bombarded surfaces. J Vac Sci Technol 16:789–792. doi: 10.1116/1.570087 CrossRefGoogle Scholar
  6. 6.
    Anderson CA, Hinthorne JR (1971) Ion microprobe mass analyzer. Science 175:853–860. doi: 10.1126/science.175.4024.853 CrossRefGoogle Scholar
  7. 7.
    Deline VR, Evans CA, Williams P (1978) A unified explanation for secondary ion yields. Appl Phys Lett 33:578–580. doi: 10.1063/1.90466 CrossRefGoogle Scholar
  8. 8.
    Storms HA, Brown KF, Stein JD (1977) Evaluation of a cesium positive ion source for secondary ion mass spectrometry. Anal Chem 49:2023–2030. doi: 10.1021/ac50021a034 CrossRefGoogle Scholar
  9. 9.
    Krohn V (1962) Emission of negative ions from metal surfaces bombarded by positive cesium ions. J Appl Phys 33:3523–3525. doi: 10.1063/1.1702439 CrossRefGoogle Scholar
  10. 10.
    Benninghoven A, Rudenauer FG, Werner HW (1987) Secondary ion mass spectrometry: basis concepts, instrumental aspects, applications, and trends. Wiley, New YorkGoogle Scholar
  11. 11.
    Jede R, Ganschow O, Kaiser U (1992) Instrumentation for SIMS. In: Briggs D, Seah MP (eds) Practical surface analysis volume 2—ion and neutral spectroscopy, 2nd edn. Wiley, New YorkGoogle Scholar
  12. 12.
    Schuhmacher M, Rasser B, De Chambost E, Hillion F, Mootz T, Migeon H-N (1999) Recent instrumental developments in magnetic sector SIMS. Fresenius J Anal Chem 365:12–18. doi: 10.1007/s002160051438 CrossRefGoogle Scholar
  13. 13.
    Smith NS, Tesch PP, Martin NP, Kinion DE (2008) A high brightness source for nano-probe secondary ion mass spectrometry. Appl Surf Sci 255:1606–1609. doi: 10.1016/j.apsusc.2008.05.141 CrossRefGoogle Scholar
  14. 14.
    Merkulov A, Peres P, Choi S, Horreard F, Ehrke H-U, Loibl N, Schuhmacher M (2010) Advanced secondary ion mass spectroscopy quantification in the first few nanometer of B, P, and As ultrashallow implants. J Vac Sci Technol B 28:C1C48–C1C53. doi: 10.1116/1.3225588 CrossRefGoogle Scholar
  15. 15.
    Winograd N (2005) The magic of cluster SIMS. Anal Chem 77:143A–149A. doi: 10.1021/ac053355f CrossRefGoogle Scholar
  16. 16.
    Weibel D, Wong S, Lockyer N, Blenkinsopp P, Hill R, Vickerman JC (2003) A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal Chem 75:1754–1764. doi: 10.1021/ac026338o CrossRefGoogle Scholar
  17. 17.
    Seah MP (2007) Cluster ion sputtering: molecular ion yield relationships for different cluster primary ions in static SIMS of organic materials. Surf Interface Anal 39:890–897. doi: 10.1002/sia.2609 CrossRefGoogle Scholar
  18. 18.
    De Mondt R, Van Vacek L, Heile A, Arlinghaus HF, Nieuwjaer N, Delcorte A, Bertrand P, Lenaerts J, Vangaever F (2008) Ion yield improvement for static secondary ion mass spectrometry by use of polyatomic primary ions. Rapid Commun Mass Spectrom 22:1481–1496. doi: 10.1002/rcm.3533 CrossRefGoogle Scholar
  19. 19.
    Magee CW (2007) Quadrupole-based dynamic SIMS: a brief history with personal reminiscences. http://www.simssociety.org/pdf-doc/Charles20%History20%of%20Quad%20SIMS.pdf. Accessed 1 Jan 2012
  20. 20.
    Wagner MS, Graham DJ, Ratner BD, Castner DG (2004) Maximizing information obtained from secondary ion mass spectra of organic thin films using multivariate analysis. Surf Sci 570:78–97. doi: 10.1016/j.susc.2004.06.184 CrossRefGoogle Scholar
  21. 21.
    Biesinger MP, Paepegaey PY, McIntyre NS, Harbottle RR, Petersen NO (2002) Principal component analysis of TOF-SIMS images of organic monolayers. Anal Chem 74:5711–5716. doi: 10.1021/ac020311n CrossRefGoogle Scholar
  22. 22.
    Vickerman JC, Gilmore I (2011) Surface analysis: the principal techniques. Wiley, New YorkGoogle Scholar
  23. 23.
    Wittmaack K (1979) On the mechanism of cluster emission in sputtering. Phys Lett 69:322–325. doi: 10.1016/0375-9601(79)90421-3 CrossRefGoogle Scholar
  24. 24.
    SIMS training tutuorial. http://www.cea.com/cai/simstheo/interfer.htm. Accessed 15 Jan 2012
  25. 25.
    Gnaser H (2012) Energy spectra of sputtered ions: assessment of the instrumental resolution. Surf Interface Anal. http://onlinelibrary.wiley.com/. doi: 10.1002/sia.4908
  26. 26.
    Wittmaack K (2011) Accurate in situ calibration of the energy bandwidth and the zero-energy offset in SIMS analysis using magnetic sector field instruments. Int J Mass Spectrom 300:65–69. doi: 10.1016/j.ijms.2010.12.009 CrossRefGoogle Scholar
  27. 27.
    Wilson RG, Stevie FA, Magee CW (1989) Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis. Wiley, New YorkGoogle Scholar
  28. 28.
    Leta DP, Morrison GH (1980) Ion implanted standards for secondary ion mass spectrometric determination of the Group IA-VIIA elements in semiconducting matrixes. Anal Chem 52:514–519. doi: 10.1021/ac50053a032 CrossRefGoogle Scholar
  29. 29.
    Goldstein M, Chu PK, Bleiler RJ (1993) Determination of oxygen concentration in heavily doped silicon. J Vac Sci Technol B 11:92–98. doi: 10.1116/1.586689 CrossRefGoogle Scholar
  30. 30.
    Wilson RG, Novak SW (1991) Systematics of secondary-ion-mass spectrometry relative sensitivity factors versus electron affinity and ionization potential for a variety of matrices determined from implanted standards of more than 70 elements (review). J Appl Phys 69:466–474. doi: 10.1063/1.347687 CrossRefGoogle Scholar
  31. 31.
    Williams P, Baker JE, Davies JA, Jackman TE (1981) Quantitative analysis of buried interfacial impurity layers by SIMS and RBS. Nucl Instrum Meth 191:318–322. doi: 10.1016/0029-554X(81)91022-3 CrossRefGoogle Scholar
  32. 32.
    Williams P, Baker JE (1980) Quantitative analysis of interfacial impurities using secondary-ion mass spectrometry. Appl Phys Lett 36:842–845. doi: 10.1063/1.91343 CrossRefGoogle Scholar
  33. 33.
    Gao Y (1988) A new secondary ion mass spectrometry technique for III-V semiconductor compounds using the molecular ion CsM+. J Appl Phys 64:3760–3762. doi: 10.1063/1.341381 CrossRefGoogle Scholar
  34. 34.
    Gnaser H, Oechsner H (1991) SIMS depth profile analysis using MCs+ molecular ions. Fresenius J Anal Chem 341:54–56. doi: 10.1007/BF00322106 CrossRefGoogle Scholar
  35. 35.
    Wittmaack K (2012) Mechanism of MCs+ formation in Cs based secondary ion mass spectrometry. Surf Sci 606:L18–L21. doi: 10.1016/j.susc.2011.10.021 CrossRefGoogle Scholar
  36. 36.
    Kataoka Y, Itani T (2007) Ultrashallow depth profiling using SIMS and ion scattering spectroscopy. Surf Interface Anal 39:826–831. doi: 10.1002/sia.2597 CrossRefGoogle Scholar
  37. 37.
    Ray MA, Baker JE, Loxton CM, Greene JE (1988) Quantitative analysis and depth profiling of rare gases in solids by secondary‐ion mass spectrometry: detection of (CsR)+ molecular ions (R = rare gas). J Vac Sci Technol A 6:44–50. doi: 10.1116/1.574966 CrossRefGoogle Scholar
  38. 38.
    Frank RC, Sucharitsopit PD, Adolphi NL, Baker JE, Baldo P, Rehn LE (1988) A SIMS study of the filling of traps for deuterium in krypton-implanted nickel. Scripta Metall 22:457–461. doi: 10.1016/0036-9748(88)90005-1 CrossRefGoogle Scholar
  39. 39.
    Vickerman JC, Swift A (1997) Secondary ion mass spectrometry-the surface mass spectrometry. In: Vickerman JC (ed) Surface analysis—the principal techniques. Wiley, New YorkGoogle Scholar
  40. 40.
    Lunnon ME, Chen JT, Baker JE (1984) Structural and electrical properties of BF2 + implanted, rapid annealed silicon. Appl Phys Lett 45:1056–1058. doi: 10.1063/1.95066 CrossRefGoogle Scholar
  41. 41.
    MacLaren SW, Baker JE, Finnegan NL, Loxton CM (1992) Surface roughness development during sputtering of GaAs and InP: evidence for the role of surface diffusion and sputter cone development. J Vac Sci Technol A 10:468–476. doi:10:1116/1.578173CrossRefGoogle Scholar
  42. 42.
    Iacob E, Bersani M, Lui A, Giubertoni D, Barozzi M, Anderle M (2004) Topography induced sputtering in a magnetic sector instrument: an AFM and SEM study. Appl Surf Sci 238:24–28. doi: 10.1016/j.apsusc.2004.05.184 CrossRefGoogle Scholar
  43. 43.
    Meuris M, De Bisschop P, Leclair JF, Vandervorst W (1989) Determination of the angle of incidence in a Cameca IMS-4f SIMS instrument. Surf Interface Anal 14:739–743. doi: 10.1002/sia.740141110 CrossRefGoogle Scholar
  44. 44.
    Vandervorst W, Shepherd FR (1987) Secondary ion mass spectrometry profiling of shallow, implanted layers using quadrupole and magnetic sector instruments. J Vac Sci Technol A 5:313–320. doi: 10.1116/1.574152 CrossRefGoogle Scholar
  45. 45.
    McKinley J, Stevie F, Neil T, Lee JJ, Wu L, Sieloff D, Granger C (2000) Depth profiling of ultra-shallow implants using a Cameca IMS-6f. J Vac Sci Technol B 18:514–518. doi: 10.1116/1.591223 CrossRefGoogle Scholar
  46. 46.
    Loesing R (2001) Development of high resolution depth profiling of ultrashallow dopant implants with SIMS. Dissertation, North Carolina State University. http://repository.lib.ncsu.edu/ir/bitstream/1840.16/5181/1/etd.pdf
  47. 47.
    Loesing R, Guryanov GM, Hunter JL, Griffis DP (2000) Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon. J Vac Sci Technol B 18:509–513. doi: 10.1116/1.591222 CrossRefGoogle Scholar
  48. 48.
    Loesing R, Guryanov GM, Phillips MS, Griffis DP (2002) Comparison of secondary ion mass spectroscopy analysis of ultrashallow phosphorus using Cs+, O2 +, and CsC6 primary ion beams. J Vac Sci Technol B 20:507–511. doi: 10.1116/1.1450588 CrossRefGoogle Scholar
  49. 49.
    Vandervorst W (2008) Semiconductor profiling with sub-nm resolution: challenges and solutions. Appl Surf Sci 255:805–812. doi: 10.1016/j.apsusc.2008.05.090 CrossRefGoogle Scholar
  50. 50.
    Bernheim M (1973) Influence of channelling on secondary ion emission yields. Radiat Eff 18:231–234. doi: 10.1080/00337577308232127 CrossRefGoogle Scholar
  51. 51.
    Ramanath G, Greene JE, Petrov I, Baker JE, Allen LH, Gillen G (2000) Channeling-induced asymmetric distortion of depth profiles from polycrystalline-TiN/Ti/TiN (001) trilayers during secondary ion mass spectrometry. J Vac Sci Technol B 18:1369–1374. doi: 10.1116/1.591387 CrossRefGoogle Scholar
  52. 52.
    Morgan AE, Chen T-YJ, Reed DA, Baker JE (1984) Measurement of boron segregation at the SiO2/Si interface using SIMS. J Vac Sci Technol A 2:1266–1270. doi: 10.1116/1.572393 CrossRefGoogle Scholar
  53. 53.
    Anderle M, Loxton CM (1986) Mixing and chemical effects in SIMS depth profiling the Si/SiO2 interface. Nucl Instrum Meth B 15:186–188. doi: 10.1016/0168-583X(86)90281-8 CrossRefGoogle Scholar
  54. 54.
    MacLaren SW, Baker JE, Guido LJ, Holonyak N, Anderle M, Loxton CM (1990) Ion beam mixing and sample effects on SIMS and SNMS depth resolution when sputtering SiO2/Si and compound semiconductor interfaces. In: Benninghoven A, Evans CA, McKeegan KD, Storms HA, Werner HW (eds) Secondary ion mass spectrometry, SIMS VII. Wiley, New York, pp 679–683Google Scholar
  55. 55.
    Stockman SA, Hansen AW, Jackson SL, Baker JE, Stillman GE (1993) Effect of post-growth cooling ambient on acceptor passivation in carbon-doped GaAs grown by metalorganic chemical vapor deposition. Appl Phys Lett 62:1248–1250. doi: 10.1063/1.108748 CrossRefGoogle Scholar
  56. 56.
    Yang MH, Flynn CP (1994) Intrinsic diffusion properties of an oxide MgO. Phys Rev Lett 73:1809–1812. doi: 10.1103/PhysRevLett.73.1809 CrossRefGoogle Scholar
  57. 57.
    Senoner M, Wirth T, Unger WES (2010) Imaging surface analysis: lateral resolution and its relation to contrast and noise. J Anal At Spectrom 25:1440–1452. doi: 10.1039/C004323K CrossRefGoogle Scholar
  58. 58.
  59. 59.
    Pacholski ML, Winograd N (1999) Imaging with mass spectrometry. Chem Rev 99:2977–3005. doi: 10.1021/cr980137w CrossRefGoogle Scholar
  60. 60.
    Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74. doi: 10.1146/annurev.biophys.050708.133634 CrossRefGoogle Scholar
  61. 61.
    Sirois EJ Jr (1990) Hydrogen segregation, defects, and interactions with dislocations in nickel and aluminum. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  62. 62.
    Kish FA, Hsieh KC, Major JS Jr, Sugg AR, Plano WE, Baker JE, Holonyak N Jr (1990) Si incorporation in laser-melted AlxGa1-xAs-GaAs quantum well heterostructures from a dielectric source. J Appl Phys 68:6174–6178. doi: 10.1063/1.346907 CrossRefGoogle Scholar
  63. 63.
    Gillen G, Fahey A, Wagner M, Mahoney C (2006) 3D molecular imaging SIMS. Appl Surf Sci 252:6537–6541. doi: 10.1016/j.apsusc.2006.02.235 CrossRefGoogle Scholar
  64. 64.
    Smentkowski VS, Ostrowski SG, Braunstein E, Keenan MR, Ohlhausen JA, Kotula PG (2007) Multivariate statistical analysis of three-spatial-dimension TOF-SIMS raw data sets. Anal Chem 79:7719–7726. doi: 10.102/ac07109o CrossRefGoogle Scholar
  65. 65.
    Nygren H, Hagenhoff B, Malmberg P, Nilsson M, Richter K (2007) Bioimaging TOF-SIMS: high resolution 3D imaging of single cells. Microsc Res Tech 70:969–974. doi: 10.1002/jemt CrossRefGoogle Scholar
  66. 66.
    Haasch RT, Venezia AM, Loxton CM (1992) The relationship between mass transport and oxide chemistry in oxidation of Ni3Al alloys. J Mater Res 7:1341–1349. doi: 10.1557/JMR.1992.1341 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations