Biodiesel in Brazil is relatively new in comparison to ethanol and is currently used in a 5 % blend (B5) nationwide. The biodiesel program is based on three “fundamental pillars”: social inclusion, environmental sustainability, and economic viability. The majority of the nation’s biodiesel is derived from soy, which raises problems for both social inclusion and environmental sustainability. Soy has been implicated in destruction of Amazon and Cerrado biomes. However, as the world’s second largest soybean producer, Brazil’s soy complex serves multiple domestic and international markets. The tremendous expansion of soy largely predated the introduction of biodiesel. The cultivated area grew much more rapidly in the five years prior to the policy than in the five years after its implementation, possibly driven more by demand for soymeal than for oil used to make biodiesel. Thus, attribution of environmental impacts is unclear. Further, while the policy of social inclusion requires that a portion of feedstock be sourced from small farmers, the industry’s dependence on soy makes this questionable. Soy tends to be planted in large and heavily mechanized monoculture plantations that are not amenable to smallholder inclusion. Efforts to introduce alternative crops deemed more environmentally or socially sustainable, like Jatropha curcas, castor, oil palm, and some native palms, have not gained much momentum and they have seen little utilization as biodiesel feedstocks. This chapter examines the implications of dependence on soy for the sustainability of Brazil’s biodiesel industry and discusses the prospects for larger volumes of alternative feedstocks to be introduced.


Amazon Biodiesel Castor Cerrado Deforestation Legal Amazon Region (LAR) National Program of Production and Use of Biodiesel (PNPB) Oil palm Social inclusion Soy 


  1. Andrade RMT, Miccolis A (2010) Biodiesel in the Amazon. ICRAF Working Paper no 113, World Agroforestry Centre, NairobiGoogle Scholar
  2. ANP (2012) Anuário estatístico Brasileiro do petróleo, gás natural e biocombustíveis—índice. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. http://www.anp.gov.br/?pg=62402. Accessed 4 Nov 2012
  3. Arima EY, Richards P, Walker R, Caldas MM (2011) Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ Res Lett 6(2):024010. doi:10.1088/1748-9326/6/2/024010CrossRefGoogle Scholar
  4. Bailis R, Baka J (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44(22):8684–8691CrossRefGoogle Scholar
  5. Bailis R, Kavlak G (2013) Environmental implications of jatropha biofuel from a silvi-pastoral production system in central-west Brazil. Environ Sci Technol 47(14):8042–8050Google Scholar
  6. Baka J (2011) Biofuels and wasteland grabbing: how India’s biofuel policy is facilitating land grabs in Tamil Nadu, India. Paper presented at the International Conference on Global Land Grabbing Sussex, UK, 6–8 April 2011Google Scholar
  7. Barros G (2009) Brazil: the challenges in becoming an agricultural superpower. In: Brainard L, Martinez-Diaz L (eds) Brazil as an economic superpower? Understanding Brazil’s changing role in the global economy. Brookings Institution Press, Washington DC, pp 81–112Google Scholar
  8. Bilich F, Da Silva R (2006) Análise Multicritério da produção de Biodiesel. Paper presented at the XIII SIMPEP, Bauru, São Paulo, 6–8 Nov 2006Google Scholar
  9. Binswager HP (1991) Brazilian policies that encourage deforestation in the Amazon. World Dev 19(7):821–829CrossRefGoogle Scholar
  10. Bolaos O (2011) Redefining identities, redefining landscapes: indigenous identity and land rights struggles in the Brazilian Amazon. J Cult Geog 28(1):45–72. doi:10.1080/08873631.2011.548480CrossRefGoogle Scholar
  11. Brannstrom C, Jepson W, Filippi AM, Redo D, Xu Z, Ganesh S (2008) Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy. Land Use Policy 25(4):579–595CrossRefGoogle Scholar
  12. BVRio (2012) Governança e Gestão. Bolsa Verde do Rio de Janeiro. http://www.bvrio.org/site/index.php/governanca. Accessed 17 Dec 2012
  13. Carlson KM, Curran LM, Ratnasari D, Pittman AM, Soares-Filho BS, Asner GP, Trigg SN, Gaveau DA, Lawrence D, Rodrigues HO (2012) Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. P Natl Acad Sci USA 109(19):7559–7564. doi:10.1073/pnas.1200452109CrossRefGoogle Scholar
  14. CEPEA (2012) Indicador Soja CEPEA/ESALQ—Paraná. Centro de Estudos Avancados em Economia Aplicada. http://cepea.esalq.usp.br/soja/?page=351 & Dias=15#. Accessed 17 Oct 2012
  15. Clement C, Lleras PE, Van Leeuwen J, Ocidental EA, Postal C (2005) O potencial das palmeiras tropicais no Brasil: acertos e fracassos das últimas décadas. Agrociências 9(1–2):67–71Google Scholar
  16. Compass G (2010) Genetically modified plants: global cultivation area of soybean. GMO Compass. http://www.gmo-compass.org/eng/agri_biotechnology/gmo_planting/342.genetically_modified_soybean_global_area_under_cultivation.html. Accessed 12 Dec 2012
  17. Corley RHV, Tinker PBH (2008) The oil palm, 4th ed. Blackwell Science, OxfordGoogle Scholar
  18. Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Persp 114(12):1803–1806Google Scholar
  19. Souza A de (1997) Redressing inequalities: Brazil’s social agenda at century’s end. In: Purcell SK, Roett R (eds) Brazil under Cardoso. Americas Society Publications. Lynne Rienner Publishers, Boulder, CO, pp 63–89Google Scholar
  20. DIEESE (2011) Estatísticas do meio rural: 2010–2011. DIEESE—Departamento Intersindical de Estatística e Estudos Socioeconômicos, BrasiliaGoogle Scholar
  21. FAOSTAT (2012) FAOSTAT agricultural production data. United Nations Food and Agriculture Organization. http://faostat3.fao.org/home/index.html. Accessed 8 Nov 2012
  22. Fearnside PM (2001) Soybean cultivation as a threat to the environment in Brazil. Environ Conserv 28(1):23–38CrossRefGoogle Scholar
  23. Fernandes GB (2009) Transgenic Contamination of soy in Brazil: who pays the bill? In: Buntzel R (ed) Genetic engineering and food sovereignty: sustainable agriculture is the only option to feed the world. Church Development Service, Bonn, pp 3–10Google Scholar
  24. Finco M (2010) Bioenergy economics: an analysis of oil seed farming and biodiesel production in the Brazilian savannah. University of Hohenheim, HohenheimGoogle Scholar
  25. Finco MVA, Doppler W (2010) The Brazilian biodiesel program and family farmers: what is the social inclusion reality in the Brazilian savannah? Pesquisa Agropecu Trop 40(4):430–438Google Scholar
  26. Flexor G, Kato KYM, Lima MdS, Rocha BN (2011) Dilemas institucionais na promoção dos biocombustíveis: o caso do programa nacional de produção e uso de biodiesel no Brasil. Cad Desen 6(8):329–354Google Scholar
  27. Garcez CAG, Vianna JNdS (2009) Brazilian biodiesel policy: social and environmental considerations of sustainability. Energy 34(5):645–654CrossRefGoogle Scholar
  28. Gazzoni DL (2012) História e biodiesel. http://www.biodieselbr.com/biodiesel/historia/biodiesel-historia.htm. Accessed 15 Oct 2012
  29. GEXSI (2008) Global market study on Jatropha: final report. Global exchange or social investment (prepared for the World Wide Fund for Nature (WWF)), London and BerlinGoogle Scholar
  30. Glewwe P, Kassouf AL (2012) The impact of the Bolsa Escola/Familia conditional cash transfer program on enrollment, dropout rates and grade promotion in Brazil. J Dev Econ 97(2):505–517CrossRefGoogle Scholar
  31. Gomes M, Biondi A, Brianezi T, Glass V (2009a) Brazil of biofuels: impacts of crops on land, environment and society—animal fat, palm oil, cotton, jatropha, sunflower and rapeseed—2009. Brazil of Biofuels, vol 5. Amigos da Terra—Amazônia Brasileira, Centro de Tecnologia Alternativa (CTA), Instituto Centro de Vida (ICV), Portal Beef Point, Universidade Federal de Rondônia (UniR), BrasiliaGoogle Scholar
  32. Gomes M, Biondi A, Brianezi T, Glass V (2009b) Brazil of biofuels: impacts of crops on land, environment and society—soybean and castor bean 2009. Brazil of Biofuels, vol 4. Amigos da Terra—Amazônia Brasileira, Centro de Tecnologia Alternativa (CTA), Instituto Centro de Vida (ICV), Portal Beef Point, Universidade Federal de Rondônia (UniR), BrasiliaGoogle Scholar
  33. Government of Brazil (1965) LEI Nº 4.771, de 15 de Setembro de 1965 (Revogada pela Lei nº 12.651, de 25/5/2012). vol 4.771, BrasiliaGoogle Scholar
  34. Government of Brazil (2005) Presidência da República: Lei No 11.097. vol 11.097, BrasiliaGoogle Scholar
  35. Greenpeace (2007) Soy moratorium reaches one year mark. Greenpeace USA. http://www.greenpeace.org/usa/en/news-and-blogs/news/soy-moratorium-reaches-one-yea/. Accessed 9 Dec 2012
  36. Greenpeace (2012) Moratória da soja chega ao sexto ano. Greenpeace Brasil. http://www.greenpeace.org/brasil/pt/Noticias/Moratoria-da-soja-chega-ao-sexto-ano/. Accessed 9 Dec 2012
  37. Hall J, Matos S, Severino L, Beltrão N (2009) Brazilian biofuels and social exclusion: established and concentrated ethanol versus emerging and dispersed biodiesel. J Clean Prod 17(Supplement 1):S77–S85CrossRefGoogle Scholar
  38. Helfand SM, Castro de Rezende G (2004) The impact of sector-specific and economy-wide policy reforms on the agricultural sector in Brazil: 1980–1998. Contemp Econ Policy 22(2):194–212CrossRefGoogle Scholar
  39. IATA (2008) 2008 Report on alternative fuels. International Air Transport Association, GenevaGoogle Scholar
  40. IBGE (2007a) Censo agropecuário 2006: resultados preliminares. Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de JaneiroGoogle Scholar
  41. IBGE (2007b) Semi-Árido Brasileiro. Instituto Brasileiro de Geografia e Estatística. Accessed 6 Nov 2012Google Scholar
  42. IBGE (2010) Síntese de indicadores sociais: uma análise das condições de vida da população Brasileira 2010. Estudos e Pesquisas Informação Demográfica e Socioeconômica, vol número 27. Instituto Brasileiro de Geografi a e Estatística—IBGE, Rio de JaneiroGoogle Scholar
  43. IBGE (2012a) Área plantada/colhida. Instituto Brasileiro de Geografía e Estatística. http://www.sidra.ibge.gov.br/bda/agric/default.asp?t=4 & z=t & o=11 & u1=1 & u2=1 & u3=1 & u4=1 & u5=1 & u6=1. Accessed 9 Nov 2012
  44. IBGE (2012b) Efetivo dos rebanhos por tipo de rebanho. Instituto Brasileiro de Geografía e Estatística. http://seriesestatisticas.ibge.gov.br/series.aspx?vcodigo=PPM01 & sv=59 & t =efetivo-rebanhos-tipo-rebanho. Accessed 9 Nov 2012
  45. IFA (2009) IFA Data. International Fertilizer Industry Association. http://www.fertilizer.org/ifa/HomePage/STATISTICS. Accessed 13 Dec 2012
  46. Inacio A (2010) Agropalma suspende produção de biodiesel em unidade de Belém. biodieselbr.com. http://www.biodieselbr.com/noticias/em-foco/agropalma-suspende-producao-biodiesel-unidade-belem-130810.htm. Accessed 13 Dec 2012
  47. Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1(2):60–64. doi:10.1111/j.1755-263X.2008.00011.xCrossRefGoogle Scholar
  48. Koh LP, Miettinen J, Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. P Natl Acad Sci USA 108(12):5127–5132. doi:10.1073/pnas.1018776108CrossRefGoogle Scholar
  49. Kouri J, Santos RF dos, Barros MAL (2006) Cultivo da mamona. Embrapa Algodão. http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Mamona/CultivodaMamona_2ed/importancia.html. Accessed 13 Dec 2012
  50. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. P Natl Acad Sci USA 107(8):3388–3393. doi:10.1073/pnas.0907318107CrossRefGoogle Scholar
  51. Macedo MN, DeFries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. P Natl Acad Sci USA 109(4):1341–1346. doi:10.1073/pnas.1111374109CrossRefGoogle Scholar
  52. Massarani L (2012) Monsanto may lose GM soya royalties throughout Brazil. Nature doi:10.1038Google Scholar
  53. Maughan MJ (2011) Land Grab and Oil Palm in Colombia. In: International Conference on Global Land Grabbing, Sussex University, 6–8 April 2011. International Institute of Social Studies in The HagueGoogle Scholar
  54. MDA (2009) Instrucao normativa No. 1. Nº 37, quarta-feira, 25 de fevereiro de 2009. Ministério do Desenvolvimento Agrário, Diário Oficial da UniãoGoogle Scholar
  55. MercoPress (2012) Major GM soy legal feud between Monsanto and five million Brazilian farmers. http://en.mercopress.com/2012/06/04/major-gm-soy-legal-feud-between-monsanto-and-five-million-brazilian-farmers. Accessed 26 March 2013
  56. Millen DD, Pacheco RDL, Arrigoni MDB, Galyean ML, Vasconcelos JT (2009) A snapshot of management practices and nutritional recommendations used by feedlot nutritionists in Brazil. J Anim Sci 87(10):3427–3439CrossRefGoogle Scholar
  57. MME (2012a) Boletim mensal dos combustíveis renováveis, vol Sept 2012, BrasiliaGoogle Scholar
  58. MME (2012b) Relatório do mercado de derivados de petróleo. vol Aug 2012, BrasiliaGoogle Scholar
  59. Morton DC, DeFries RS, Shimabukuro YE, Anderson LO, Arai E, del BEspirito-SantoF, Freitas R, Morisette J (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. P Nat Acad Sci USA 103(39):14637–14641. doi:10.1073/pnas.0606377103CrossRefGoogle Scholar
  60. Nepstad DC, Stickler CM, Almeida OT (2006) Globalization of the Amazon soy and beef industries: opportunities for conservation. Conserv Biol 20(6):1595–1603CrossRefGoogle Scholar
  61. NTBG (2012) Ricinus communis. National Tropical Botanical Garden. http://ntbg.org/plants/plant_details.php?plantid=11833. Accessed 12 Dec 2012
  62. Peixoto F (2005) Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere 61(8):1115–1122CrossRefGoogle Scholar
  63. PNUD (2012) Ranking do IDH dos municípios do Brasil 2003. Programa das Nações Unidas para o Desenvolvimento. http://www.pnud.org.br/atlas/ranking/IDH_Municipios_Brasil_2000.aspx?indiceAccordion=1 & li=li_Ranking2003. Accessed 7 March 2013
  64. Pousa GPAG, Santos ALF, Suarez PAZ (2007) History and policy of biodiesel in Brazil. Energ Policy 35(11):5393–5398CrossRefGoogle Scholar
  65. Rodrigues PCdS (2011) Regulação transnacional privada-análise institucional da governança da soja. In: 3° Encontro Nacional—Associação Brasileira de Relações Internacionais (ABRI), São Paulo—SP, Brazil, 2011. Pontifícia Universidade Católica de Minas GeraisGoogle Scholar
  66. Rudorff BFT, Adami M, Aguiar DA, Moreira MA, Mello MP, Fabiani L, Amaral DF, Pires BM (2011) The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens 3(1):185–202CrossRefGoogle Scholar
  67. Sawyer D (2008) Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado. Philos T Roy Soc B 363(1498):1747–1752CrossRefGoogle Scholar
  68. Souza J (2009) Dendê: potencial para produção de energia renovávelGoogle Scholar
  69. Stecker T (2012) Brazilians begin to swap forest credits to push Amazon forestation. E&E Publishing, LLC. Accessed 17 Dec 2012Google Scholar
  70. Steward C (2007) From colonization to “environmental soy”: a case study of environmental and socio-economic valuation in the Amazon soy frontier. Agr Hum Values 24(1):107–122. doi:10.1007/s10460-006-9030-4CrossRefGoogle Scholar
  71. Sheis S, Swette B (2012) Between discourses of extreme pressure and modernization: small farmers’ diverse perceptions of vulnerability to soy in Santarém, Pará. Consilience—J Sust Dev 8(1):200–218Google Scholar
  72. Tollefson J (2012) President prunes forest reforms. Nature 486(13). doi:10.1038/486013aGoogle Scholar
  73. USDA FAS (2006) Brazil—oilseeds and products Annual 2006. USDA Foreign Agriculture Service, BrasiliaGoogle Scholar
  74. USDA FAS (2010) Brazil biofuels annual: 2010. USDA Foreign Agricultural Service, Washington DCGoogle Scholar
  75. USDA FAS (2012a) Brazil—oilseeds and products annual 2012. USDA Foreign Agriculture Service, BrasiliaGoogle Scholar
  76. USDA FAS (2012b) Brazil biofuels annual: 2012. USDA Foreign Agricultural Service, Washington DCGoogle Scholar
  77. USDA FAS (2012c) Peoples Republic of China—oilseeds and products Annual 2012. USDA Foreign Agriculture Service, BeijingGoogle Scholar
  78. Vila-Aiub MM, Vidal RA, Balbi MC, Gundel PE, Trucco F, Ghersa CM (2008) Glyphosate-resistant weeds of South American cropping systems: an overview. Pest Manag Sci 64(4):366–371CrossRefGoogle Scholar
  79. Warnken PF (1999) The development and growth of the soybean industry in Brazil. Wiley, New YorkGoogle Scholar
  80. Wilkinson J, Herrera S (2010) Biofuels in Brazil: debates and impacts. J Peasant Stud 37(4):749–768. doi:10.1080/03066150.2010.512457CrossRefGoogle Scholar
  81. Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharm 31(2):117–165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Yale School of Forestry and Environmental StudiesNew HavenUSA

Personalised recommendations