Molecular Biology of Cancer

  • Kewal K. Jain


There are multiple factors involved in the causation of cancer, and both external and intrinsic events play a role in the malignant transformation of cells. An understanding of the biochemical abnormalities in tumor cells and the differences from normal cellular biology can lead to the development of effective, nontoxic, tumor-specific treatments.


Nucleotide Pool Growth Factor Family Fanconi Anemia Pathway Regulate Tumor Angiogenesis Centrosome Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bailey SM, Murnane JP. Telomeres, chromosome instability and cancer. Nucleic Acids Res 2006;34:2408-17.CrossRefGoogle Scholar
  2. Bangham AD, Standish MM, Watkin JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238-52.CrossRefGoogle Scholar
  3. Bayever E, Iversen PL, Smith L, et al. Systemic human antisense therapy begins. Antisense Research & Development 1992;2:109-10.Google Scholar
  4. Casorelli I, Bossa C, Bignami M. DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. Int J Environ Res Public Health 2012;9:2636-57.CrossRefGoogle Scholar
  5. Chandra D, Bratton SB, Person MD, et al. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 2006;125:1333-46.CrossRefGoogle Scholar
  6. Decottignies A. Alternative end-joining mechanisms: a historical perspective. Front Genet 2013;4:48.CrossRefGoogle Scholar
  7. Douglas SJ, Davis SS, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 1987;3:233-61.Google Scholar
  8. Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 1971;285:1182-6.CrossRefGoogle Scholar
  9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.CrossRefGoogle Scholar
  10. Knipscheer P, Räschle M, Smogorzewska A, et al. The Fanconi Anemia Pathway Promotes Replication-Dependent DNA Interstrand Cross-Link Repair. Science 2009;326:1698-701.CrossRefGoogle Scholar
  11. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity 1975. Biotechnology 1992;24:524-6.Google Scholar
  12. Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007;27:1859-67.CrossRefGoogle Scholar
  13. Laramore GE. The use of neutrons in cancer therapy: a historical perspective through the modern era. Semin Oncol 1997;24:672-85.Google Scholar
  14. Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008;456:66-72.CrossRefGoogle Scholar
  15. Li H, Fan X, Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 2007;101:805-15.CrossRefGoogle Scholar
  16. Li M, Xiong ZG. Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 2011;3:156-66.Google Scholar
  17. Mathe G, Schwarzenberg L. Bone marrow transplantation (1958-1978): conditioning and graft-versus-host disease, indications in aplasias and leukemias. Pathol Biol (Paris) 1979;27:337-43.Google Scholar
  18. Mittal V, Nolan DJ. Genomics and proteomics approaches in understanding tumor angiogenesis. Expert Rev Mol Diagn 2007;7:133-47.CrossRefGoogle Scholar
  19. Moore TL, Kupchik HZ, Marcon N, Zamcheck N. Carcinoembryonic antigen assay in cancer of the colon and pancreas and other digestive tract disorders. Am J Dig Dis 1971;16:1-7.CrossRefGoogle Scholar
  20. Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposium on Quantitative Biology 1986;51:263-73.CrossRefGoogle Scholar
  21. Papas RJ. Origins of cancer therapy. Yale J Biol Med 2001;74:391-8.Google Scholar
  22. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans -immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. NEJM 1990;323:570-8.CrossRefGoogle Scholar
  23. Schwartz RS. Paul Ehrlich’s magic bullets. NEJM 2004;350:1079-80.CrossRefGoogle Scholar
  24. Siddiqa A, Cavazos DA, Marciniak RA. Targeting telomerase. Rejuvenation Res 2006;9:378-90.CrossRefGoogle Scholar
  25. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142-62.CrossRefGoogle Scholar
  26. Thijssen V, Postel R, Brandwijk R, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. PNAS 2006;103:5975-80.CrossRefGoogle Scholar
  27. Thomas ED, Lochte HL Jr, et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957;257:491-496.CrossRefGoogle Scholar
  28. Vecchiarelli-Federico LM, Cervi D, Haeri M, et al. Vascular Endothelial Growth Factor—A Positive and Negative Regulator of Tumor Growth. Cancer Res 2010;70;863-7.CrossRefGoogle Scholar
  29. Xie L, Duncan MB, Pahler J, et al. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proc Natl Acad Sci U S A 2011;108:9939-44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kewal K. Jain
    • 1
  1. 1.Jain PharmaBiotechBaselSwitzerland

Personalised recommendations