Skip to main content

Cosmology: Early Universe

  • Chapter
  • First Online:
Principles of Astrophysics

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 120k Accesses

Abstract

In Chap. 18 we saw how Cepheid stars and type Ia supernovae have been used to measure the expansion of the universe. If we run the clock backward, we deduce that in the past the universe was smaller, denser, and hotter than it is today. In this chapter we use gas physics and particle physics to understand the early, hot phase of the universe, and we discuss observations that probe this phase directly (through the cosmic microwave background radiation) and indirectly (through the abundances of elements created in the first few minutes after the big bang).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [3] for more of the story.

  2. 2.

    While some mass is converted to energy via fusion in stars, it is a tiny fraction of the total.

  3. 3.

    Electrons are leptons, and they contribute so little mass compared to baryons that we neglect them when characterizing the mass density of the universe. They are important when it comes to charge, though.

  4. 4.

    Recall that we made a similar calculation for the Sun’s hydrogen in Sect. 14.1.3 and found a higher transition temperature of ∼ 104 K. In the Sun, the higher density facilitates recombination.

  5. 5.

    For more discussion of particle physics in the early universe, see [6, 14, 15].

References

  1. R.A. Alpher, R. Herman, Phys. Today 41, 24 (1988)

    Article  Google Scholar 

  2. P.J.E. Peebles, Astrophys. J. 142, 1317 (1965)

    Article  ADS  Google Scholar 

  3. P. Peebles, Principles of Physical Cosmology. Princeton Series in Physics (Princeton University Press, Princeton, 1993)

    Google Scholar 

  4. R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Astrophys. J. 142, 414 (1965)

    Article  ADS  Google Scholar 

  5. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  6. B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics, 2nd edn. (Addison-Wesley, Massachusetts, 2007)

    Google Scholar 

  7. E. Kolb, M. Turner, The Early Universe. Frontiers in Physics (Addison-Wesley, Massachusetts, 1994)

    Google Scholar 

  8. C.L. Bennett et al., Astrophys. J. Suppl. Ser. 208, 20 (2013)

    Article  ADS  Google Scholar 

  9. S. Das et al., Phys. Rev. Lett. 107(2), 021301 (2011)

    Article  ADS  Google Scholar 

  10. R. Keisler et al., Astrophys. J. 743, 28 (2011)

    Article  ADS  Google Scholar 

  11. Planck Collaboration, ArXiv e-prints arXiv:1303.5062 (2013)

    Google Scholar 

  12. R.K. Sachs, A.M. Wolfe, Astrophys. J. 147, 73 (1967)

    Article  ADS  Google Scholar 

  13. Planck Collaboration, ArXiv e-prints arXiv:1303.5076 (2013)

    Google Scholar 

  14. D. Maoz, Astrophysics in a Nutshell (Princeton University Press, Princeton, 2007)

    Google Scholar 

  15. A. Weiss, Einstein Online 2, 1018 (2006)

    Google Scholar 

  16. K.M. Nollett, S. Burles, Phys. Rev. D 61(12), 123505 (2000)

    Article  ADS  Google Scholar 

  17. A. Coc, S. Goriely, Y. Xu, M. Saimpert, E. Vangioni, Astrophys. J. 744, 158 (2012)

    Article  ADS  Google Scholar 

  18. S. Weinberg, The First Three Minutes: A Modern View of the Origin of the Universe (BasicBooks, New York, 1993)

    Google Scholar 

  19. S. Burles, K.M. Nollett, M.S. Turner, Astrophys. J. Lett. 552, L1 (2001)

    Article  ADS  Google Scholar 

  20. E. Aver, K.A. Olive, E.D. Skillman, J. Cosmol. Astropart. Phys. 4, 004 (2012)

    Article  ADS  Google Scholar 

  21. F. Iocco, G. Mangano, G. Miele, O. Pisanti, P.D. Serpico, Phys. Rep. 472, 1 (2009)

    Article  ADS  Google Scholar 

  22. T.M. Bania, R.T. Rood, D.S. Balser, Nature 415, 54 (2002)

    Article  ADS  Google Scholar 

  23. C. Charbonnel, F. Primas, Astron. Astrophys. 442, 961 (2005)

    Article  ADS  Google Scholar 

  24. A. Weiss, Einstein Online 2, 1019 (2006)

    Google Scholar 

  25. J.M. O’Meara, D. Tytler, D. Kirkman, N. Suzuki, J.X. Prochaska, D. Lubin, A.M. Wolfe, Astrophys. J. 552, 718 (2001)

    Article  ADS  Google Scholar 

  26. B.D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keeton, C. (2014). Cosmology: Early Universe. In: Principles of Astrophysics. Undergraduate Lecture Notes in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9236-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9236-8_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9235-1

  • Online ISBN: 978-1-4614-9236-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics