Skip to main content

Macrocyclic Protease Inhibitors Constrained into a β-Strand Geometry

  • Chapter
  • First Online:
Proteases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

Abstract

Proteases almost universally bind to their inhibitors and substrates in such a way that the component amino acid backbone is constrained into an extended β-strand conformation. One important general approach to inhibitor design, as discussed here, is to pre-organise the structure into this conformation. This can lead to improved potency, biostability, resistance to proteolytic degradation, and hence therapeutic potential. Here we present an overview of some different synthetic approaches that have been employed for introducing such a macrocycle, with reference to selected examples. We also briefly discuss some representative naturally occurring examples of such macrocyclic protease inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilt W (2004) Ubiquitin-proteasome system - targets of programmed destruction: a primer to regulatory proteolysis in yeast. Cell Mol Life Sci 61:1615–1632

    Article  PubMed  CAS  Google Scholar 

  2. Hooper NM (2002) Proteases: a primer. Essays Biochem 38:1–8

    PubMed  CAS  Google Scholar 

  3. Johnson LL, Dyer R, Hupe DJ (1998) Matrix metalloproteinases. Curr Opin Chem Biol 2:466–471

    Article  PubMed  CAS  Google Scholar 

  4. Beckett RP, Davidson AH, Drummond AH et al (1996) Recent advances in matrix metalloproteinase inhibitor research. Drug Discov Today 1:16–26

    Article  CAS  Google Scholar 

  5. Biswas S, Harris F, Dennison S et al (2004) Calpains: targets of cataract prevention? Trends Mol Med 10:78–84

    Article  PubMed  CAS  Google Scholar 

  6. Nixon RA (2003) The calpains in aging and aging-related diseases. Ageing Res Rev 2:407–418

    Article  PubMed  CAS  Google Scholar 

  7. West ML, Fairlie DP (1995) Targeting Hiv-1 protease - a test of drug-design methodologies. Trends Pharmacol Sci 16:67–75

    Article  PubMed  CAS  Google Scholar 

  8. Tyndall JDA, Reid RC, Tyssen DP et al (2000) Synthesis, stability, antiviral activity, and protease-bound structures of substrate-mimicking constrained macrocyclic inhibitors of HIV-1 protease. J Med Chem 43:3495–3504

    Article  PubMed  CAS  Google Scholar 

  9. Vassar R, Bennett BD, Babu-Khan S et al (1999) beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  10. Schechte I, Berger A (1967) On size of active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157

    Article  Google Scholar 

  11. Cuerrier D, Moldoveanu T, Davies PL (2005) Determination of peptide substrate specificity for μ-calpain by a peptide library-based approach: the importance of primed side interactions. J Biol Chem 280:40632–40641

    Article  PubMed  CAS  Google Scholar 

  12. Loughlin WA, Tyndall JDA, Glenn MP et al (2010) Update 1 of: beta-strand mimetics. Chem Rev 110:Pr32–Pr69

    Article  PubMed  CAS  Google Scholar 

  13. Madala PK, Tyndall JDA, Nall T et al (2010) Update 1 of: proteases universally recognize beta strands in their active sites. Chem Rev 110:Pr1–Pr31

    Article  PubMed  CAS  Google Scholar 

  14. Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978

    Article  PubMed  CAS  Google Scholar 

  15. Gilon C, Halle D, Chorev M et al (1991) Backbone cyclization - a new method for conferring conformational constraint on peptides. Biopolymers 31:745–750

    Article  PubMed  CAS  Google Scholar 

  16. Borchardt R, Jeffrey A, Siahaan TJ et al (1997) Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 27:235–256

    Article  Google Scholar 

  17. Burton PS, Conradi RA, Ho NFH et al (1996) How structural features influence the biomembrane permeability of peptides. J Pharm Sci 85:1336–1340

    Article  PubMed  CAS  Google Scholar 

  18. McGeary RP, Fairlie DP (1998) Macrocyclic peptidomimetics: potential for drug development. Curr Opin Drug Discov Devel 1:208–217

    PubMed  CAS  Google Scholar 

  19. Martin JL, Begun J, Schindeler A et al (1999) Molecular recognition of macrocyclic peptidomimetic inhibitors by HIV-1 protease. Biochemistry 38:7978–7988

    Article  PubMed  CAS  Google Scholar 

  20. Chen HY, Jiao WT, Jones MA et al (2012) New tripeptide-based macrocyclic calpain inhibitors formed by N-alkylation of histidine. Chem Biodivers 9:2473–2484

    Article  PubMed  CAS  Google Scholar 

  21. Reid RC, Kelso MJ, Scanlon MJ et al (2002) Conformationally constrained macrocycles that mimic tripeptide β-strands in water and aprotic solvents. J Am Chem Soc 124:5673–5683

    Article  PubMed  CAS  Google Scholar 

  22. Abell AD, Jones MA, Coxon JM et al (2009) Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. Angew Chem Int Ed Engl 48:1455–1458

    Article  PubMed  CAS  Google Scholar 

  23. Jones MA, Coxon JM, McNabb SB et al (2009) Efficient large-scale synthesis of CAT811, a potent calpain inhibitor of interest in the treatment of cataracts. J Chem 62:671–675

    CAS  Google Scholar 

  24. Stuart BG, Coxon JM, Morton JD et al (2011) Molecular modeling: a search for a calpain inhibitor as a new treatment for cataractogenesis. J Med Chem 54:7503–7522

    Article  PubMed  CAS  Google Scholar 

  25. Tsantrizos YS, Bolger G, Bonneau P et al (2003) Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew Chem Int Ed Engl 42:1355–1360

    Article  Google Scholar 

  26. Hanessian S, Yang GQ, Rondeau JM et al (2006) Structure-based design and synthesis of macroheterocyclic peptidomimetic inhibitors of the aspartic protease beta-site amyloid precursor protein cleaving enzyme (BACE). J Med Chem 49:4544–4567

    Article  PubMed  CAS  Google Scholar 

  27. Miller SJ, Blackwell HE, Grubbs RH (1996) Application of ring-closing metathesis to the synthesis of rigidified amino acids and peptides. J Am Chem Soc 118:9606–9614

    Article  CAS  Google Scholar 

  28. Pehere AD, Abell AD (2012) New beta-strand templates constrained by Huisgen cycloaddition. Org Lett 14:1330–1333

    Article  PubMed  CAS  Google Scholar 

  29. Pehere AD, Sumby CJ, Abell AD (2013) New cylindrical peptide assemblies defined by extended parallel beta-sheets. Org Biomol Chem 11:425–429

    Article  PubMed  CAS  Google Scholar 

  30. Ebert M-O, Gardiner J, Ballet S et al (2009) Synthesis and high-resolution NMR structure of a β3-octapeptide with and without a tether introduced by olefin metathesis. Helv Chim Acta 92:2643–2658

    Article  CAS  Google Scholar 

  31. Phillips AJ, Abell AD (1999) Ring-closing metathesis of nitrogen-containing compounds: applications to heterocycles, alkaloids and peptidomimetics. Aldrichim Acta 32:75–89

    CAS  Google Scholar 

  32. Machauer R, Laumen K, Veenstra S et al (2009) Macrocyclic peptidomimetic beta-secretase (BACE-1) inhibitors with activity in vivo. Bioorg Med Chem Lett 19:1366–1370

    Article  PubMed  CAS  Google Scholar 

  33. Ersmark K, Nervall M, Gutiérrez-de-Terán H et al (2006) Macrocyclic inhibitors of the malarial aspartic proteases plasmepsin I, II, and IV. Bioorg Med Chem 14(7):2197–2208

    Article  PubMed  CAS  Google Scholar 

  34. Stachel SJ, Coburn CA, Sankaranarayanan S et al (2006) Macrocyclic inhibitors of β-secretase: functional activity in an animal model. J Med Chem 49:6147–6150

    Article  PubMed  CAS  Google Scholar 

  35. Ghosh AK, Devasamudram T, Hong L et al (2005) Structure-based design of cycloamide–urethane-derived novel inhibitors of human brain memapsin 2 (β-secretase). Bioorg Med Chem Lett 15:15–20

    Article  PubMed  CAS  Google Scholar 

  36. Goudreau N, Brochu C, Cameron DR et al (2004) Potent inhibitors of the hepatitis C virus NS3 protease: design and synthesis of macrocyclic substrate-based β-strand mimics. J Org Chem 69:6185–6201

    Article  PubMed  CAS  Google Scholar 

  37. Machauer R, Veenstra S, Rondeau JM et al (2009) Structure-based design and synthesis of macrocyclic peptidomimetic beta-secretase (BACE-1) inhibitors. Bioorg Med Chem Lett 19:1361–1365

    Article  PubMed  CAS  Google Scholar 

  38. Pedersen DS, Abell A (2011) 1,2,3-Triazoles in peptidomimetic chemistry. Eur J Org Chem 2011:2399–2411

    Article  Google Scholar 

  39. Pehere AD, Pietsch M, Gutschow M et al (2013) Synthesis and extended activity of triazole-containing macrocyclic protease inhibitors. Chem Eur J 19(24):7975–7981

    Article  PubMed  CAS  Google Scholar 

  40. Kase H, Kaneko M, Yamada K (1987) K-13, a novel inhibitor of angiotensin-I converting enzyme produced by micromonospora-halophytica subsp exilisia.1. Fermentation, isolation and biological properties. J Antibiot 40:450–454

    Article  PubMed  CAS  Google Scholar 

  41. Sano S, Ikai K, Katayama K et al (1986) Of4949, new inhibitors of aminopeptidase-B.2. Elucidation of structure. J Antibiot 39:1685–1696

    Article  PubMed  CAS  Google Scholar 

  42. Janetka JW, Satyshur KA, Rich DH (1996) A cyclic side-chain-linked biphenyl ether tripeptide: H3N + -cyclo-[Phe((4-0))-Phe-Phe((3-0))]-OMe.Cl-. Acta Crystallogr C 52:3112–3114

    Article  PubMed  Google Scholar 

  43. Janetka JW, Raman P, Satyshur K et al (1997) Novel cyclic biphenyl ether peptide beta-strand mimetics and HIV-protease inhibitors. J Am Chem Soc 119:441–442

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the Australian Research Council (ARC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Abell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pehere, A.D., Abell, A.D. (2013). Macrocyclic Protease Inhibitors Constrained into a β-Strand Geometry. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_11

Download citation

Publish with us

Policies and ethics