Skip to main content

An Overview of Endoplasmic Reticulum Calpain System

  • Chapter
  • First Online:
Book cover Proteases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

Abstract

Calpains, a family of Ca2+-dependent cysteine proteases, can modulate their substrates structure and function through limited proteolytic activity. Calpain mediated proteolysis of intracellular proteins is a key step in various cellular processes such as cytoskeleton modulation, cell migration, cell cycle progression and apoptosis. Calpain activity is controlled in vivo by calpastatin, a multiheaded endogenous polypeptide encoded by the calpastatin gene that specifically inhibits calpain. Calpains have previously been considered as the cytoplasmic enzymes; however, recent research have demonstrated that m-calpain and calpastatin are present in endoplasmic reticulum and play important roles in a variety of pathophysiological conditions including necrotic and apoptotic cell death phenomena. This review summarizes function and regulation of the endoplasmic reticulum calpain system, focusing on the relevance of its roles in several cellular and biochemical events under normal and some pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guroff G (1964) A neutral calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem 239:149–155

    PubMed  CAS  Google Scholar 

  2. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355–362

    Article  PubMed  CAS  Google Scholar 

  3. Sorimachi H, Ishiura S, Suzuki K (1997) Structure and physiological function of calpains. Biochem J 328:721–732

    PubMed  CAS  Google Scholar 

  4. Melloni E, Michetti M, Salamino F, Minafra R, Pontremoli S (1996) Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem Biophys Res Commun 229:193–197

    Article  PubMed  CAS  Google Scholar 

  5. Nishimura T, Goll DE (1991) Binding of calpain fragments to calpastatin. J Biol Chem 266:1842–11850

    Google Scholar 

  6. Zhang S, Yuan JXJ, Barrett EK, Dong H (2005) Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am J Physiol 288:C245–C252

    Article  CAS  Google Scholar 

  7. Bertram R, Arceo R (2008) A mathematical study of the differential effects of two SERCA isoforms on oscillation in pancreatic islet. Bull Math Biol 70:1251–1271

    Article  PubMed  Google Scholar 

  8. Eva S, Una F, Afshin S (2003) Caspase -12 and ER- stress-mediated apoptosis the story so far. Ann N Y Acad Sci 1010:186–194

    Article  Google Scholar 

  9. Michalak M, Cobett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344:281–292

    Article  PubMed  CAS  Google Scholar 

  10. Barnoy S, Zipser Y, Glaser T, Grimberg Y, Kosower NS (1999) Association of calpain (Ca dependent thiol protease) with its endogenous inhibitor calpastatin in myoblasts. J Cell Biochem 74:522–531

    Article  PubMed  CAS  Google Scholar 

  11. Unlap MT, Bates E, Williams C, Komlosi P, Williams I, Siroky G, Siroky B, Bell PD (2003) Na+/Ca2+ exchanger: target for oxidative stress in salt-sensitive hypertension. Hypertension 42:363–368

    Article  PubMed  CAS  Google Scholar 

  12. Letavernier E, Zafrani L, Letavernier B, Haymann JP, Baud L (2012) The role of calpains in myocardial remodeling and heart failure. Cardiovasc Res 96:38–45

    Article  PubMed  CAS  Google Scholar 

  13. Ghosh SK, Chakraborti T, Michael JR, Chakraborti S (1996) Oxidant-mediated proteolytic activation of Ca2+ATPase in microsomes of pulmonary smooth muscle. FEBS Lett 387:171–174

    Article  PubMed  CAS  Google Scholar 

  14. Chakraborti T, Ghosh SK, Michael JR, Chakraborti S (1996) Role of an aprotinin-sensitive protease in the activation of Ca2+-ATPase by superoxide radical in microsomes of pulmonary vascular smooth muscle. Biochem J 317:885–890

    PubMed  CAS  Google Scholar 

  15. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  16. Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96(1):32–37

    Article  PubMed  CAS  Google Scholar 

  17. Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y et al (1989) Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types Specific expression of the mRNA in skeletal muscle. J Biol Chem 264:20106–20111

    PubMed  CAS  Google Scholar 

  18. Dear N, Matena K, Vingron M, Boehm T (1997) A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution. Genomics 45:175–184

    Article  PubMed  CAS  Google Scholar 

  19. Sorimachi H, Ishiura S, Suzuki K (1993) A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca2+-binding domain. J Biol Chem 268:19476–19482

    PubMed  CAS  Google Scholar 

  20. Dear TN, Boehm T (2001) Identification and characterization of two novel calpain large subunit genes. Gene 274:245–252

    Article  PubMed  CAS  Google Scholar 

  21. Dear TN, Möller A, Boehm T (1999) CAPN11: a calpain with high mRNA levels in testis and located on chromosome 6 Genomics 59: 243-247

    Google Scholar 

  22. Dear TN, Meier NT, Hunn M, Boehm T (2000) Gene structure, chromosomal localization, and expression pattern of capn12, a new member of the calpain large subunit gene family. Genomics 68:152–160

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53:S12–S18

    Article  PubMed  CAS  Google Scholar 

  24. Zatz M, Starling A (2005) Calpains and disease. New Eng J Med 352:2413–2423

    Article  PubMed  CAS  Google Scholar 

  25. Wu HY, Tomizawa K, Matsui H (2007) calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med Okayama 61:123–137

    PubMed  CAS  Google Scholar 

  26. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction Am J Physiol l291: C1159-C1171

    Google Scholar 

  27. Reverter D, Braun M, Fernandez-Catalan C, Strobl S, Sorimachi H, Bode W (2002) Flexibility analysis and structure comparison of two crystal forms of calcium-free human m-calpain. Biol Chem 383:1415–1422

    Article  PubMed  CAS  Google Scholar 

  28. Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL (2002) A Ca2+ switch aligns the active site of calpain. Cell 108:649–660

    Article  PubMed  CAS  Google Scholar 

  29. Tompa P, Emori Y, Sorimachi H, Suzuki K, Friedrich P (2001) Domain III of calpain is a Ca2+-regulated phospholipid-binding domain. Biochem Biophys Res Commun 280:1333–1339

    Article  PubMed  CAS  Google Scholar 

  30. Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K et al (2000) The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci U S A 97:588–592

    Article  PubMed  CAS  Google Scholar 

  31. Kinbara K, Sorimachi H, Ishiura S, Suzuki K (1997) Muscle-specific calpain, p94, interacts with the extreme c-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. Arch Biochem Biophys 342:99–107

    Article  PubMed  CAS  Google Scholar 

  32. Friedrich P, Papp H, Halasy K, Farkas A, Farkas B, Tompa P et al (2004) Differential distribution of calpain small subunit 1 and 2 in rat brain. Eur J Neurosci 19:1819–1825

    Article  PubMed  Google Scholar 

  33. Sorimachi H, Suzuki K (2001) The structure of calpain. J Biochem 129:653–664

    Article  PubMed  CAS  Google Scholar 

  34. Wendt A, Thompson VF, Goll DE (2004) Interaction of calpastatin with calpain: a review. Biol Chem 385:465–472

    Article  PubMed  CAS  Google Scholar 

  35. Kawasaki H, Emori Y, Imajoh-Ohmi S, Minami Y, Suzuki K (1989) Identification and characterization of inhibitory sequences in four repeating domains of the endogenous inhibitor for calcium-dependent protease. J Biochem 106:274–281

    PubMed  CAS  Google Scholar 

  36. Cong M, Thompson VF, Goll DE, Antin PB (1998) The bovine calpastatin gene promoter and a new N-terminal region of the protein are targets for cAMP-dependent protein kinase activity. J Biol Chem 273:660–666

    Article  PubMed  CAS  Google Scholar 

  37. Kapprell HP, Goll DE (1989) Effect of Ca2+ on binding of the calpains to calpastatin. J Biol Chem 264:17888–17896

    PubMed  CAS  Google Scholar 

  38. Kumamoto T, Kleese WC, Cong J, Goll DE, Pierce PR, Allen RE (1992) Localization of the Ca2+dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle Ana Res 232: 60–77

    Google Scholar 

  39. Goll DE, Thompson VF, Taylor RG, Zalewska T (1992) Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 14:549–556

    Article  PubMed  CAS  Google Scholar 

  40. Shaikh S, Samanta K, Kar P, Roy S, Chakraborti T, Chakraborti S (2010) m-Calpain-mediated cleavage of Na+/Ca2+ exchanger-1 in caveolae vesicles isolated from pulmonary artery smooth muscle. Mol Cell Biochem 341:167–180

    Article  PubMed  CAS  Google Scholar 

  41. Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S (2010) Mitochondrial calpain system: an overview. Arch Biochem Biophys 495:1–7

    Article  PubMed  CAS  Google Scholar 

  42. Samanta K, Kar P, Ghosh B, Chakraborti T, Chakraborti S (2007) Localization of m-calpain and calpastatin and studies of their association in pulmonary smooth muscle endoplasmic reticulum. Biochem Biophys Acta 1770:1297–1307

    Article  PubMed  CAS  Google Scholar 

  43. Hood JL, Logan BB, Sinai AP, Brooks WH, Roszman TL (2003) Association of the calpain/calpastatin network with subcellular organelles. Biochem Biophys Res Commun 310: 1200–1212

    Article  PubMed  CAS  Google Scholar 

  44. Honda S, Marumoto T, Hirota T, Nitta M, Arima Y, Ogawa M, Saya H (2004) Activation of m-calpain is required for chromosome alignment on the metaphase plate during mitosis. J Biol Chem 279:10615–10623

    Article  PubMed  CAS  Google Scholar 

  45. Samanta K, Kar P, Chakraborti T, Shaikh S, Chakraborti S (2010) Characteristic properties of endoplasmic reticulum membrane m-calpain, calpastatin and lumen m-calpain: a comparative study between membrane and lumen m-calpains. J Biochem 147:765–779

    Article  PubMed  CAS  Google Scholar 

  46. Edmunds T, Naganis PA, Sathe SK, Thompson VF, Goll DE (1991) Comparison of the autolyzed and unautolyzed forms of μ-and m-calpain from bovine skeletal muscle. Biochim Biophys Acta 1077:197–208

    Article  PubMed  CAS  Google Scholar 

  47. Hood JL, Brooks WH, Roszman TL (2004) Differential compartmentalization of the calpain/calpastatin network with the endoplasmic reticulum and Golgi apparatus. J Biol Chem 278:43126–43135

    Article  Google Scholar 

  48. Hosfield CM, Moldoveanu T, Davies PL, Elce JS, Jia Z (2001) Calpain mutants with increased Ca2+ sensitivity and implications for the role of the C(2)-like domain. J Biol Chem 276:7404–7407

    Article  PubMed  CAS  Google Scholar 

  49. Evans JH, Gerger SH, Murray D, Leslie C (2004) The calcium binding loops of the cytosolic phospholipase A2 C2 domain specify targeting to Golgi and ER in live cells. Mol Biol Cell 15:371–383

    Article  PubMed  CAS  Google Scholar 

  50. Xie X, Dwyer MD, Swenson L, Parker MH, Botfield MC (2001) Crystal structure of calcium-free human sorcin: a member of the penta-EF-hand protein family. Protein Sci 10:2419–2425

    Article  PubMed  CAS  Google Scholar 

  51. Nishihara H, Nakagawa Y, Ishikawa H, Ohba M, Shimizu K, Nakamura T (2001) Matrix vesicles and media vesicle as nonclassical pathways for the secretion of m-calpain from MC3T3-E1 cells. Biochem Biophys Res Commun 285:845–853

    Article  PubMed  CAS  Google Scholar 

  52. Tam LY, Loo TW, Clarke DM, Reithmeier AF (1994) Identification of an internal topogenic signal sequence in human Band 3, the erythrocyte anion exchanger. J Biol Chem 269:32542–32550

    PubMed  CAS  Google Scholar 

  53. Joliot A, Maizel A, Rosenberg D, Trembleau A, Dupas S, Volovitch M, Prochiantz A (1998) Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr Biol 8:856–863

    Article  PubMed  CAS  Google Scholar 

  54. Samanta K, Kar P, Chakraborti T, Chakrabort S (2010) Calcium-dependent cleavage of the Na+/Ca2+ exchanger by m-calpain in isolated endoplasmic reticulum. J Biochem 147:225–235

    Article  PubMed  CAS  Google Scholar 

  55. Takano J, Watanabe M, Hitomi K, Maki M (2000) Four types of calpastatin isoforms with distinct ammo-terminal sequences are specified by alternative first exons and differentially expressed in mouse tissues. J Biochem 128:83–92

    Article  PubMed  CAS  Google Scholar 

  56. Ozaki T, Yamashita T, Ishiguro S (2009) Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim Biophys Acta 1793: 1848–1859

    Article  PubMed  CAS  Google Scholar 

  57. Ozaki T, Yamashita T, Ishiguro S (2008) ERp57-associated mitochondrial micro-calpain truncates apoptosis-inducing factor. Biochim Biophys Acta 1783:1955–1963

    Article  PubMed  CAS  Google Scholar 

  58. Xu D, Perez RE, Rezaiekhaligh MH, Bourdi M, Truog WE (2009) Knockdown of ERp57 increases BiP/GRP78 induction and protects against hyperoxia and tunicamycin-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 297:L44–L51

    Article  PubMed  CAS  Google Scholar 

  59. Prins D, Michalak M (2009) Endoplasmic reticulum proteins in cardiac development and dysfunction. Can J Physiol Pharmacol 87:419–425

    Article  PubMed  CAS  Google Scholar 

  60. Michalak M, Groendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  PubMed  CAS  Google Scholar 

  61. Laporte R, Hui A, Laher I (2004) Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 56:439–513

    Article  PubMed  CAS  Google Scholar 

  62. Chakraborti S, Mandal A, Das S, Chakraborti T (2004) Inhibition of Na+/Ca2+- exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase-2 Biochim Biophys Acta 1671: 70-78

    Google Scholar 

  63. Case RM, Eisner D, Gurney A, Jones O, Muallemd S, Verkhratsky A (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signaling system. Cell Calcium 42:345–350

    Article  PubMed  CAS  Google Scholar 

  64. Takano J, Tomioka M, Tsubuki S, Higuchi M, Iwata N, Itohara S, Maki M, Saido TC (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains. J Biol Chem 280:16175–16184

    Article  PubMed  CAS  Google Scholar 

  65. Nicotera P, Hartzell P, Baldi C, Svensson SA, Bellomo G, Orrenius S (1986) Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system. J Biol Chem 261:14628–14635

    PubMed  CAS  Google Scholar 

  66. Rardon DP, Cefali DC, Mitchell RD, Seiler SM, Hathaway DR, Jones LR (1990) Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II Effects on the Ca2+ release channel. Circ Res 67:84–96

    Article  PubMed  CAS  Google Scholar 

  67. Igwe OJ, Filla MB (1997) Aging-related regulation of myoinositol 1,4,5-trisphosphate signal transduction pathway in the rat striatum. Brain Res Mol Brain Res 46:39–53

    Article  PubMed  CAS  Google Scholar 

  68. Bevers BM, Neumar WR (2008) Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab 28:655–673

    Article  PubMed  CAS  Google Scholar 

  69. French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK, Powers SK (2006) Ischemia–reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol 290:H128–H136

    CAS  Google Scholar 

  70. Parsons JT, Churn SB, DeLorenzo RJ (1999) Global ischemia-induced inhibition of the coupling ratio of calcium uptake and ATP hydrolysis by rat whole brain microsomal Mg2+/Ca2+ ATPase. Brain Res 834:32–41

    Article  PubMed  CAS  Google Scholar 

  71. Davis KA, Samson SE, Hammel KE, Kiss L, Fulop F, Grover AK (2008) Functional linkage of Na+/Ca2+-exchanger to sarco/endoplasmic reticulum Ca2+ pump in coronary artery: comparison of smooth muscle and endothelial cells. J Cell Mol Med 12:1–9

    Google Scholar 

  72. Farrukh IS, Michael JR, Summer WR, Adkinson NF, Gurtner GH (1985) Thromboxane induced pulmonary vasoconstriction: involvement of calcium. J Appl Physiol 58:34–44

    PubMed  CAS  Google Scholar 

  73. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distel-horst CW (1994) Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes Proc Natl Acad Sci (USA) 91: 6569–6573

    Google Scholar 

  74. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed  CAS  Google Scholar 

  75. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regula- tion of endoplasmic reticulum Ca2+: a control point for apoptosis Science 300: 135–139

    Google Scholar 

  76. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  77. Vermeulen K, Bockstaele DRV, Berneman ZN (2005) Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84:627–639

    Article  PubMed  CAS  Google Scholar 

  78. Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14:996–1007

    Article  PubMed  Google Scholar 

  79. Moshal KS, Singh M, Sen U, Rosenberger DSE, Henderson B, Tyagi N et al (2006) Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 291:H2825–H2835

    Article  PubMed  CAS  Google Scholar 

  80. Papatheodorou L, Weiss N (2007) Vascular Oxidant Stress and Inflammation in Hyperhomocysteinemia. Antioxid Redox Signal 9:1941–1958

    Article  PubMed  CAS  Google Scholar 

  81. Roberts-Lewis JM, Savage MJ, Marcy VR, Pinsker LR, Siman R (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci 14:3934–3944

    PubMed  CAS  Google Scholar 

  82. Wei H, Perry DC (1996) Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem 67:2390–2398

    Article  PubMed  CAS  Google Scholar 

  83. Nakayama R, Yano T, Ushijima K, Abe E, Terasaki H (2002) Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology 96:705–710

    Article  PubMed  CAS  Google Scholar 

  84. Kopil CM, Siebert AP, Kevin Foskett J, Neumar RW (2012) Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor impairs ER Ca2+ buffering and causes neurodegeneration in primary cortical neurons. J Neurochem 123:147–158

    Article  PubMed  CAS  Google Scholar 

  85. Kopil CM, Vais H, Cheung KH, Siebert AP, Mak DO, Foskett JK, Neumar RW (2011) Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) has InsP(3)-independent gating and disrupts intracellular Ca2+ homeostasis. J Biol Chem 286:35998–36010

    Article  PubMed  CAS  Google Scholar 

  86. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    Article  PubMed  CAS  Google Scholar 

  87. Kaufman RJ (1999) Stress signaling from the lumen of the endo-plasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  PubMed  CAS  Google Scholar 

  88. Sorimachi H, Ono Y (2012) Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res 96:11–22

    Article  PubMed  CAS  Google Scholar 

  89. Müller AL, Hryshko LV, Dhalla NS (2012) Extracellular and intracellular proteases in cardiac dysfunction due to ischemia–reperfusion injury. Int J Cardiol 164(1):39–47

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Thanks are due to the University of Kalyani, Kalyani 741235, West Bengal, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Samanta, K., Kar, P., Chakraborti, T., Chakraborti, S. (2013). An Overview of Endoplasmic Reticulum Calpain System. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_1

Download citation

Publish with us

Policies and ethics