Skip to main content

Rheological Behavior of Food Gels

  • Chapter
  • First Online:
Rheology of Fluid, Semisolid, and Solid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

Many foods may be considered to be gels. Rheological studies can provide much useful information on sol-gel and gel-sol transition, and gel point, as well as on the characteristics of gels. Information on various food gel systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, M. 1991. Growth process of polymers near the gelation threshold. Die Makromolekulare Chemie, Macromol. Symp. 45: 1–9.

    CAS  Google Scholar 

  • Ahmad, M. U., Tashiro, Y., Matsukawa, S., and Ogawa, H. 2004. Comparison of gelation mechanism of surimi between heat and pressure treatment by using rheological and NMR relaxation measurements. J. Food Sci. 69(9): E497–E501.

    CAS  Google Scholar 

  • Alevisopoulos, S., Kasapis, S., and Abeysekera, R. 1996. Formation of kinetically trapped gels in the maltodextrin-gelatin system. Carbohydr. Res. 293: 79–99.

    CAS  Google Scholar 

  • Annable, P., Williams, P. A., and Nishinari, K. 1994. Interaction in xanthan-glucomannan mixtures and the influence of electrolyte. Macromolecules 27: 4204–4211.

    CAS  Google Scholar 

  • Andresen, I. L. and Smidsrød, O. 1977. Temperature dependence of the elastic properties of alginate gels. Carbohydr. Res. 58: 271–279.

    CAS  Google Scholar 

  • Antonov, Y. A., Van Puyvelde, P., Moldenaers, P., and Leuven, K. U. 2004. Effect of shear flow on the phase behavior of an aqueous gelatin-dextran emulsion. Biomaeromoleeules 5: 276–283.

    CAS  Google Scholar 

  • Audebrand, M., Kolb, M., and Axelos, M. A.V. 2006. Combined rheological and ultrasonic study of alginate and pectin gels near the sol-gel transition. Biomaeromoleeules 7(10): 2811–2817.

    CAS  Google Scholar 

  • Axelos, M. A. V. and Kolb, M. 1990. Crosslinked biopolymers: experimental evidence for scalar percolation theory. Phys. Rev. Lett. 64: 1457–1460.

    CAS  Google Scholar 

  • Beaulieu, M., Turgeon, S. L., and Doublier, J. L. 2001. Rheology, texture and microstructure of whey proteins/low methoxyl pectins mixed gels with added calcium. Int. Dairy J. 11: 961–967.

    CAS  Google Scholar 

  • Bisschops, J. 1955. Gelation of concentrated polyacrylonitrile. J. Poly. Sci. 17: 89–98.

    CAS  Google Scholar 

  • Bloksma, A. H. and Nieman, W. 1975. The effect of temperature on some rheological properties of wheat flour doughs. J. Texture Stud. 6: 343–361.

    Google Scholar 

  • Borchard, W. and Burg, B. 1989. Investigations of the complex shear modulus and the optical rotation in the system gelatin-water during the thermoreversible gelation process, in Molecular Basis of Polymer Networks, eds. A. Baumgärtner and C. E. Picot, pp. 162–168, Springer-Verlag, Berlin.

    Google Scholar 

  • Bourriot, S., Garnier, C., and Doublier, J. L. 1999a. Phase separation, rheology and microstructure of micellar casein-guar gum mixtures. Food Hydrocolloids 13: 43–49.

    CAS  Google Scholar 

  • Bourriot, S., Garnier, C., and Doublier, J. L. 1999b. Micellar casein/kappa-carrageenan mixtures. 1. Phase separation and ultrastructure. Carbohydr. Polym. 40: 145–157.

    CAS  Google Scholar 

  • Braudo, E. E., Muratalieva, I. R., Plashchina, I. G., and Tolstoguzov, V. B. 1991. Correlation between the temperatures of formation/breakdown of the gel network and conformational transitions of agarose macromolecules. Carbohydr. Polym. 15: 317–321.

    CAS  Google Scholar 

  • Braudo, E. E., Plashchina, I. G., and Tolstoguzov, V. B. 1984. Structural characterisation of thermoreversible anionic polysaccharide gels by their elastoviscous properties. Carbohydr. Polym. 4: 23–48.

    CAS  Google Scholar 

  • Brownsey, G. J., Ellis, H. S., Ridout, M. J., and Ring, S. G. 1987. Elasticity and failure in composite gels. J. Rheol. 31: 635–649.

    CAS  Google Scholar 

  • Bryant, C. M. and McClements, D. J. 2000. Influence of xanthan gum on physical characteristics of heat-denaturated whey protein solutions and gels. Food Hydrocolloids 14: 383–390.

    CAS  Google Scholar 

  • Capron, I., Nicolai, T., and Smit, C. 1999. Effect of addition of κ-carrageenan on the mechanical and structural properties of β-lactoglobulin gels. Carbohydr. Poly. 40: 233–238.

    CAS  Google Scholar 

  • Carnali, J. O. and Zhou, Y. 1996. An examination of the composite model for starch gels. J. Rheol. 40(2): 221–234.

    CAS  Google Scholar 

  • Chambon, F. and Winter, H. H. 1987. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 31: 683–697.

    CAS  Google Scholar 

  • Chronakis, I. S. and Kasapis, S. 1995. A rheological study on the application of carbohydrate- protein incompatibility of the development of low fat commercial spreads. Carbohydr. Polym. 28: 367–373.

    CAS  Google Scholar 

  • Christ, D., Takeuchi, K. P., and Cunha, R. L. 2005. Effect of sucrose addition and heat treatment on egg albumen protein gelation. J. Food Sci. 70(3): E230–E238.

    CAS  Google Scholar 

  • Chronakis, I. S., Kasapis, S., and Richardson, R. K. 1996a. Small deformation rheological properties of maltodextrin-milk protein systems. Carbohydr. Polym. 29: 137–148.

    CAS  Google Scholar 

  • Chronakis, I. S., Kasapis, S., Richardon, R. K., and Doxastakis, G. 1996b. Characterisation of a commercial soy isolate by physical techniques. J. Texture Stud. 26: 371–389.

    Google Scholar 

  • Clark, A. H. 1991. Structural and mechanical properties of biopolymer gels, in Food Polymers, Gels and Colloids, Dickinson, E. ed., pp. 322–338, The Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Clark, A. H. 1994. Rationalisation of the elastic modulus-molecular weight relationship for κ-carrageenan gels using cascade theory. Carbohydr. Polym. 23: 247–251.

    CAS  Google Scholar 

  • Clark, A. H. and Ross-Murphy, S. B. 1987. Structural and mechanical properties of biopolymer gels. Adv. in Polym. Sci. 83: 57–192.

    CAS  Google Scholar 

  • Clark, A. H., Evans, K. T., and Farrer, D. B. 1994. Shear modulus-temperature meltdown profiles of gelatin and pectin gels. Int. J. Bio. Macromol. 16: 125–130.

    CAS  Google Scholar 

  • Cuvelier, G., Peigney-Noury, C., and Launay, B. 1990. Viscoelastic properties of physical gels: critical behaviour at the gel point, in Gums and Stabilisers for the Food Industry 5, eds. G. O. Phillips, D. J. Wedlock and P. A. Williams, pp. 549–552, IRL Press, Oxford, UK.

    Google Scholar 

  • da Silva, J. A. L. and Gonçalves, M. P. 1994. Rheological study into the ageing process of high methoxyl pectin/sucrose aqueous gels. Carbohydr. Polym. 24: 235–245.

    Google Scholar 

  • da Silva, J. A. L., Gonçalves, M. P., and Rao, M. A. 1995. Kinetics and thermal behaviour of the structure formation process in HMP/sucrose gelation. Int. J. Biol. Macromol. 17: 25–32.

    Google Scholar 

  • da Silva, J. A. L., Gonçalves, M. P., Doublier, J. L., and Axelos, M. A. V. 1996. Effect of galactomannans on the viscoelastic behaviour of pectin/calcium networks. Carbohydr. Polym. 24: 235–245.

    Google Scholar 

  • Dickinson, E. 1998. Stability and rheological implications of electrostatic milk protein/polysaccharide interactions. Trends Food Sci. Technol. 9: 347–354.

    CAS  Google Scholar 

  • de Gennes, P. G. 1979. Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Djabourov, M., Leblond, J., and Papon, P. 1988a. Gelation of aqueous gelatin solutions. I. Structural investigation. J. de Physique 49: 319–332.

    Google Scholar 

  • Djabourov, M., Leblond, J., and Papon, P. 1988b. Gelation of aqueous gelatin solutions. II. Rheology of the sol-gel transition. J. de Physique 49: 333–343.

    Google Scholar 

  • Dobson, C. M. 2003. Protein folding and misfolding. Nature 426: 884–890.

    CAS  Google Scholar 

  • Donato, L., Garnier, C., Novales, B., Durand, S., and Doublier, J. L. 2005. Heat-induced gelation of bovine serum albumin/low-methoxyl pectin systems and the effect of calcium ions. Biomacromolecules 6: 374–385.

    Google Scholar 

  • Doublier, J. L. and Choplin, L. 1989. A rheological description of amylose gelation. Carbohydr. Res. 193: 215–226.

    CAS  Google Scholar 

  • Doublier, J. L., Garnier, C., Renard, D., and Sanchez, C. 2000. Protein-polysaccharide interactions. Curr. Opin. Colloid and Interface Sci. 5: 202–214.

    Google Scholar 

  • Doublier, J. L., Launay, B., and Cuvelier, G. 1992. Viscoelastic properties of food gels, in Viscoelastic Properties of Foods, eds. M. A. Rao and J. F. Steffe, Chapter 14, Elsevier Science Publishers, Barking, England.

    Google Scholar 

  • Dumas, J. and Bacri, J.C.1980. New method of viscosity measurement near the gelatin sol-gel transition. Le Journal de Physique—Letters 41: 279–282.

    Google Scholar 

  • Durand, D., Naveau, F., Busnel, J. P., Delsanti, M., and Adam, M. 1989. Evolution of polyurethane gel fraction near the gelation threshold. Macromolecules 22: 2011–2012.

    CAS  Google Scholar 

  • Eiselt, P., Lee, K. Y., and Mooney, D. J. 1999. Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32(17): 5561–5566.

    CAS  Google Scholar 

  • Eldridge, J. E. and Ferry, J. D. 1954. Studies of the cross-linking process in gelatin gels. III. Dependence of melting point on concentration and molecular weight. J. Phys. Chem. 58: 992–995.

    CAS  Google Scholar 

  • Eleya, M. M. O. and Turgeon, S. L. 2000. Rheology of κ-carrageenan and β-lactoglobulin mixed gels. Food Hydrocolloids 14: 29–40.

    Google Scholar 

  • Evageliou, V., Alevisopolous, S., and Kasapis, S. 1997. Application of stress-controlled analysis to the development of low-fat spreads. J. Texture Stud. 28: 319–335.

    Google Scholar 

  • Ferry, J. D. 1980. Viscoelastic Properties of Polymers, 3rd ed., John Wiley and Sons Inc., New York, USA.

    Google Scholar 

  • Flory, P. J. 1953. Principles of Polymer Chemistry, Cornell University, Ithaca, NY, USA.

    Google Scholar 

  • Flory, P. J. 1974. Introductory lecture. Faraday Discuss. Chem. Soc. 57: 7–18.

    CAS  Google Scholar 

  • Foegeding, E. A. 2006. Food Biophysics of Protein Gels: A challenge of nano and macroscopic proportions. Food Biophys. 1: 41–50.

    Google Scholar 

  • Foegeding, E. A., Li, H., and Bottcher, S. R. 1998. Gelation of globular proteins, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Härtel, pp. 111–156, Marcel Dekker, Inc., NY.

    Google Scholar 

  • Fu, J.-T. 1998. Rheology of sol-gel and gel-sol transition of low-methoxyl pectin + Ca2 + gels: the effect of sweeteners, Ph.D thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Fu, J.-T. and Rao, M. A. 1999. The influence of sucrose and sorbitol on gel-sol transition of low-methoxyl pectin + Ca2 + gels. Food Hydrocolloids 13: 371–380.

    CAS  Google Scholar 

  • Fu, J.-T. and Rao, M. A. 2001. Rheology and structure development during gelation of low-methoxyl pectin gels: the effect of sucrose. Food Hydrocolloids 15: 93–100.

    CAS  Google Scholar 

  • Fuchs, T., Richtering, W., Burchard, W., Kajiwara, K., and Kitamura, S. 1997. Gel point in physical gels: rheology and light scattering from thermoreversibly gelling schizophyllan. Polymer Gels and Networks 5(6): 541–559.

    Google Scholar 

  • Garnier, C. 1992. Gelification des pectines en presence de calcium: Étude physico-chimique et rheologique. Ph.D thesis, Université de Nantes, Nantes, France.

    Google Scholar 

  • Gidley, M. J., Morris, E. R., Murray, E. J., Powell, D. A., and Rees, D. A. 1979. Spectroscopic and stoichiometric characterisation of the calcium-mediated association of pectate chains in gels and in the solid state. J. Chem. Soc. Chem. Comm. (22): 990–992.

    Google Scholar 

  • Gilsenan, P. M., Richardson, R. K., and Morris, E. R. 2003. Associative and segregative interactions between gelatin and low-methoxy pectin: part 3 quantitative analysis of co-gel moduli. Food Hydrocolloids 17: 751–761.

    CAS  Google Scholar 

  • Gluck-Hirsch, J. B. and Kokini, J. L. 1997. Determination of the molecular weight between crosslinks of waxy maize starches using the theory of rubber elasticity. J. Rheol. 41: 129–139.

    CAS  Google Scholar 

  • Gordon, M. and Ross-Murphy, S. B. 1975. The structure and properties of molecular trees and networks. Pure Appl. Chem. 43: 1–26.

    CAS  Google Scholar 

  • Gosal, W. S., Clark, A. H., and Ross-Murphy, S. B. 2002. Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin. Langmuir 18: 7174–7181.

    CAS  Google Scholar 

  • Gosal, W. S., Clark, A. H., and Ross-Murphy, S. B. 2004. Fibrillar β-lactoglobulin gels: part 2. dynamic mechanical characterization of heat-set systems. Biomaeromoleeules 5: 2420–2429.

    CAS  Google Scholar 

  • Goycoolea, F. M., Richardson, R. K., Morris, E. R., and Gidley, M. J. 1995. Stoichiometry and conformation of xanthan in synergistic gelation with locust bean gum or konjac glucomannan—evidence for heterotypic binding. Macromolecules 28: 8308–8320.

    CAS  Google Scholar 

  • Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D. 1973. Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBSLett. 32(1): 195–198.

    CAS  Google Scholar 

  • Grinberg, V. Y., and Tolstoguzov, V. B. 1997. Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocolloids 11: 145–158.

    CAS  Google Scholar 

  • Grosso, C. R. F. and Rao, M. A. 1998. Dynamic rheology of structure development in low-methoxyl pectin + Ca2 + + sugargels. Food Hydrocolloids 12: 357–363.

    CAS  Google Scholar 

  • Haque, A. and Morris, E. R. 1993. Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr. Polym. 22: 161–173.

    CAS  Google Scholar 

  • Haug, I., Williams, M. A. K., Lundin, L., Smidsrod, O., and Draget, K. I. 2003. Molecular interactions in, and rheological properties of, a mixed biopolymer system undergoing order/disorder transitions. Food Hydrocolloids 17: 439–444.

    CAS  Google Scholar 

  • Hermans, P. H. 1949. Gels, in Colloid Science, ed. H. R. Kruyt, Vol. 2, pp. 483–651, Elsevier Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  • Higgs, P. G. and Ball, R. C. 1990. A “reel-chain” model for the elasticity of biopolymer gels, and its relationship to slip-link treatments of entanglements, in Physical Networks. Polymers and Gels, eds. W, Burchard and S. B. Ross-Murphy, Chapter 15, Elsevier Applied Science Publishers, Barking, England.

    Google Scholar 

  • Hinrichs, J. and Rademacher, B. 2004. High pressure thermal denaturation kinetics of whey proteins. J. Dairy Res. 71(4): 480–488.

    CAS  Google Scholar 

  • Hsieh, Y. L. and Regenstein, J. M. 1992a. Modeling gelation of egg albumen and ovalbumin. J. Food Sci. 57: 856–861.

    Google Scholar 

  • Hsieh, Y. L. and Regenstein, J. M. 1992b. Elastic attributes of heated egg protein gels. J. Food Sci. 57(4): 862–868.

    CAS  Google Scholar 

  • Hsieh, Y.-L., Regenstein, J. M., and Rao, M. A. 1993. The gel point of whey and egg proteins from dynamic rheological data. J. Food Sci. 58: 116–119.

    CAS  Google Scholar 

  • Ikeda, S., Nitta, Y., Kim, B. S., Temsiripong, T., Pongsawatmanit, R., and Nishinari, K. 2004. Single-phase mixed gels of xyloglucan and gellan. Food Hydrocolloids 18: 669–675.

    CAS  Google Scholar 

  • Iso, N., Mizuno, H., Saito, T., Ohzeki, F., and Kurihara. N. 1984. The change of the rheological properties of surimi (minced fish-meat) by heating. Bull. Japan. Soc. Sci. Fish. 50: 1045–1049.

    Google Scholar 

  • Joanny, J. F. 1989. The sol-gel transition. Physica B 156, 157: 381–385.

    Google Scholar 

  • Kasapis, S., Morris, E. R., Norton, I. T., and Brown, C. R. T. 1993a. Phase-equilibria and gelation in gelatin maltodextrin systems. 3. Phase-separation in mixed gels. Carbohydr. Polym. 21:261–268.

    CAS  Google Scholar 

  • Kasapis, S., Morris, E. R., Norton, I. T., and Clark, A. H. 1993b. Phase equilibria and gelation in gelatin/maltodextrin systems—Part I: gelation of individual components. Carbohydr. Polym. 21: 243–248.

    CAS  Google Scholar 

  • Kasapis, S., Morris, E. R., Norton, I. T., and Clark, A. H. 1993c. Phase-equilibria and gelation in gelatin maltodextrin systems. 4. Composition-dependence of mixed-gel moduli. Carbohydra. Polym. 21: 269–276.

    CAS  Google Scholar 

  • Katsuta, K. and Kinsella, J. E. 1990. Effects of temperature on viscoelastic properties and activation energies of whey protein gels. J. Food Sci. 55: 1296–1302.

    CAS  Google Scholar 

  • Kavanagh, G. M. and Ross-Murphy, S. B. 1998. Rheological characterisation of polymer gels. Prog. Polym. Sci. 23: 533–562.

    CAS  Google Scholar 

  • Kavanagh, G. M., Clark, A. H. and Ross-Murphy, S. B. 2000. Heat-induced gelation of globular proteins: 4. Gelation kinetics of low pH β-lactoglobulin gels. Langmuir 16:9584–94.

    CAS  Google Scholar 

  • Kawabata, A. 1977. Studies on chemical and physical properties of pectic substances from fruits. Mem. Tokyo Univ. Agric. 19: 115–200.

    CAS  Google Scholar 

  • Kerner, E. H. 1956. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. Sect. B 69: 808–813.

    Google Scholar 

  • Kim, B. S., Takemasa, M., and Nishinari, K. 2006. Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. Biomacromolecules 7: 1223–1230.

    CAS  Google Scholar 

  • Kloek, W., Luyten, H., and van Vliet, T. 1996. Small and large deformation behaviour of mixtures of xanthan and enzyme modified galactomannans. Food Hydrocolloids 10: 123–129.

    CAS  Google Scholar 

  • Kohyama, K., Iida, H., and Nishinari, K. 1993. A mixed system composed of different molecular weights konjac glucomannan and kappa-carrageenan: large deformation and dynamic viscoelastic study. Food Hydrocolloids 7: 213–226.

    CAS  Google Scholar 

  • Kuang, Q. L., Cheng, G. X., Zhao, J., and Li, Y. J. 2006. Thermogelation hydrogels of methylcellulose and glycerol-methylcellulose systems. J. Appl. Polym. Sci. 100(5): 4120–4126.

    CAS  Google Scholar 

  • Langendorff, V., Cuvelier, G., Michon, C., Launay, B., Parker, A., and de Kruif, C. G. 2000. Effects of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocolloids 14: 273–280.

    CAS  Google Scholar 

  • Lewis, T. B. and Nielsen, L. E. 1970. Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14: 1449–1471.

    CAS  Google Scholar 

  • Liang, J. N., Stevens, E. S., Morris, E. R., and Rees, D. A. 1979. Spectroscopic origin of conformation-sensitive contributions to polysaccharide optical activity: vacuum-ultraviolet circular dichroism. Biopolymers 18: 327–333.

    CAS  Google Scholar 

  • Lin, Y. G., Maliin, D. T., Chien, J. C. W., and Winter, H. H. 1991. Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 24: 850–854.

    CAS  Google Scholar 

  • Lopes da Silva, J. A., Rao, M. A., and Fu, J-T. 1998. Rheology of structure development and loss during gelation and melting, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 111–156, Marcel Dekker, Inc., NY.

    Google Scholar 

  • Lopes da Silva, J. A. and Rao, M. A. 2006. Pectins: Structure, functionality and uses, in Food Polysaccharides and Their Applications: Second Edition, Revised and Expanded, eds. A. M. Stephen, G. O. Phillips, and P. A. Williams, pp. 353–411, CRC Press, Inc., Boca Raton and New York.

    Google Scholar 

  • Lopes da Silva, J. A. L., Gonçalves, M. P., Doublier, J. L., and Axelos, M. A.V. 1996. Effect of galactomannans on the viscoelastic behaviour of pectin/calcium networks. Polymer Gels and Networks 4: 65–83.

    Google Scholar 

  • Loret, C., Meunier, V., Frith, W. J., and Fryer, P. J. 2004. Rheological characterisation of the gelation behaviour of maltodextrin aqueous solutions. Carbohydr. Polym. 57 (2): 153–163.

    CAS  Google Scholar 

  • Loveday, S. M., Su, J., Rao, M. A., Anema, S. and Singh, H. 2011. Effect of calcium on the morphology and functionality of whey protein nanofibrils. Biomacromolecules 12:3780–3788.

    CAS  Google Scholar 

  • Lu, L., Liu, X. X., Dai, L., and Tong, Z. 2005. Difference in concentration dependence of relaxation critical exponent n for alginate solutions at sol-gel transition induced by calcium cations. Biomaeromoleeules 6(4): 2150–2156.

    CAS  Google Scholar 

  • Lundell, C., Walkenstrom, P., Loren, N., and Hermansson, A. M. 2004. Influence of elongational flow on phase separated inclusions within gelling biopolymer drops. Food Hydrocolloids 18: 805–815.

    CAS  Google Scholar 

  • Mannion, R. O., Melia, C. D., Launay, B., Cuvelier, G., Hill, S. E., Harding, S. E., and Mitchell, J. R. 1992. Xanthan/locust bean gum interactions at room temperature. Carbohydr. Polym. 19: 91–97.

    CAS  Google Scholar 

  • Manoj, P., Kasapis, S., and Hember, M. W. N. 1997. Sequence-dependent kinetic trapping of biphasic structures in maltodextrin-whey protein gels. Carbohydr. Polym. 32: 141–153.

    CAS  Google Scholar 

  • Manson, J. A. and Sperling, L. H. 1976. Polymer Blends and Composites, Plenum Press, NY.

    Google Scholar 

  • Mao, C. F. and Rwei, S. P. 2006. Cascade analysis of mixed gels of xanthan and locust bean gum. Polymer 41: 7980–7987.

    Google Scholar 

  • Maroziene, A. and de Kruif, C. G. 2000. Interaction of pectin and casein micelles. Food Hydrocolloids 14: 391–394.

    CAS  Google Scholar 

  • Marrs, W. M. 1982. Gelatin carbohydrate interactions and their effect on the structure and texture of confectionery gels. Prog. Food Nutr. Sci. 6: 259–268.

    CAS  Google Scholar 

  • Martin, J. E., Adolf, D., and Wilcoxon, J. P. 1989. Viscoelasticity near the sol-gel transition. Phys. Rev. A Gen. Phys. 39: 1325–1332.

    CAS  Google Scholar 

  • Matia-Merino, L., Lau, K., and Dickinson, E. 2004. Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids 18:271–281.

    CAS  Google Scholar 

  • Matsumoto, T., Kawai, M., and Masuda, T. 1992. Influence of chain stiffness on the gelation and gel structure of alginate aqueous systems. J. Chem. Soc. Faraday Trans. 88(18): 2673–2676.

    CAS  Google Scholar 

  • McClain, P. E., Kuntz, E., and Pearson, A. M. 1969. Application of stress-strain behaviour to thermally contracted collagen from epimysical connective tissues. J. Agric. Food Chem. 17: 629–632.

    CAS  Google Scholar 

  • Michon, C., Cuvelier, G., and Launay, B. 1993. Concentration dependence of the critical viscoelastic properties of gelatin at the gel point. Rheol. Acta 32: 94–103.

    CAS  Google Scholar 

  • Michon, C., Cuvelier, G., Launay, B., and Parker, A. 1996. Viscoelastic properties of λ-carrageenan/gelatin mixtures. Carbohydr. Polym. 31: 161–169.

    CAS  Google Scholar 

  • Miles, M. J., Morris, V. J., and Ring, S. G. 1985. Gelation of amylose. Carbohyd. Res. 135: 257–269.

    CAS  Google Scholar 

  • Miyoshi, E., Takaya, T., and Nishinari, K. 1998. Effects of glucose, mannose and konjac glucomannan on the gel-sol transition in gellan gum aqueous solutions by rheology and DSC. Polymer Gels and Networks 6: 273–290.

    Google Scholar 

  • Mochizuki, Y., Saito, T., Iso, N., Mizuno, H., Aochi, A., and Noda, M. 1987. Effects of adding fat on rheological properties of fish meat gel. Bull. Japan. Soc. Sci. Fish. 53: 1471–1474.

    Google Scholar 

  • Mohammed, Z. H., Hember, M. W. N., Richardson, R. K., and Morris, E. R. 1998. Application of polymer blending laws to composite gels of agarose and crosslinked waxy maize starch. Carbohydr. Polym. 36: 27–36.

    CAS  Google Scholar 

  • Monteiro, S. R., Tavares, C. A., Evtuguin, D. V., Moreno, N., and Lopes da Silva, J. A. 2005. Influence of galactomannans with different molecular weights on the gelation of whey proteins at neutral pH. Biomacromolecules 6: 3291–3299.

    CAS  Google Scholar 

  • Montembault, A., Viton, C., and Domard, A. 2005. Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 26(14): 1633–1643.

    CAS  Google Scholar 

  • Morris, E. R. 1990. Mixed polymer gels, in Food Gels, ed. R Harris, pp. 291–359, Elsevier Science Publishers, Barking, UK.

    Google Scholar 

  • Morris, E. R. 1992. The effect of solvent partition on the mechanical properties of biphasic biopolymer gels: an approximate theoretical treatment. Carbohydr. Polym. 17: 65–70.

    Google Scholar 

  • Morris, E. R. 1998. Segregative interactions in biopolymer co-gels, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 111–156, Marcel Dekker, Inc., NY.

    Google Scholar 

  • Morris, E. R. 2000. Rheology of biopolymer co-gels, in Hydrocolloids, Part 2: Fundamentals and Applications in Food, Biology, and Medicine, ed. K. Nishinari, pp. 135–0146, Elsevier Science, Amsterdam, The Netherlands.

    Google Scholar 

  • Morris, E. R., Rees, D. A., Norton, I. T., and Goodall, D. M. 1980a. Calorimetric and chiroptical evidence of aggregate-driven helix formation in carrageenan systems. Carbohydr. Res. 80: 317–323.

    CAS  Google Scholar 

  • Morris, E. R., Gidley, M. J., Murray, E. J., Powell, D. A., and Rees, D. A. 1980b. Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties. Int. J. Biol. Macromol. 2: 327–330.

    CAS  Google Scholar 

  • Morris, V. J. and Chilvers, G. R. 1981. Rheological studies on specific ion forms of iota-carrageenate gels. J. Sci. Food. Agric. 32: 1235–1241.

    CAS  Google Scholar 

  • Muller, H. G. 1969. Application of the statistical theory of rubber elasticity to gluten and dough. Cereal Chem. 46: 443–446.

    CAS  Google Scholar 

  • Muller, R., Gérard, E., Dugand, P., Rempp, P., and Gnanou, Y. 1991. Rheological characterization of the gel point: a new interpretation. Macromolecules 24: 1321–1326.

    CAS  Google Scholar 

  • Ndi, E. E., Swanson, B. G., Barbosa-Canovas, G. V., and Luedecke, L. O. 1996. Rheology and micro-structure of β-lactoglobulin/sodium polypectate gels. J. Agric. Food Chem. 44: 86–92.

    CAS  Google Scholar 

  • Neiser, S., Draget, K. I., and Smidsrød, O. 1998. Gel formation in heat treated bovine serum albuminsodium alginate systems. Food Hydrocolloids 12:127–132.

    CAS  Google Scholar 

  • Nishinari, K., Koide, S., and Ogino, K. 1985. On the temperature dependence of elasticity of thermoreversible gels. J. de Physique 46: 793–797.

    Google Scholar 

  • Nishinari, K., Koide, S., Williams, P. A., and Phillips, G. O. 1990. A zipper model approach to the thermoreversible gel-sol transition. J. de Physique 51: 1759–1768.

    Google Scholar 

  • Nishinari, K., Miyoshi, E., Takaya, T., and Williams, P. A. 1996. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan. Carbohydr. Polym. 30: 193–207.

    CAS  Google Scholar 

  • Nitta, Y., Kim, B. S., and Nishinari, K. 2003. Synergistic gel formation of xyloglucan/gellan mixtures as studied by rheology, DSC, and circular dichroism. Biomacromolecules 4: 1654–1660.

    CAS  Google Scholar 

  • Nolte, H., John, S., Smidsrød, O., and Stokke, B. T. 1992. Gelation of xanthan with trivalent metal ions. Carbohydr. Polym. 18: 243–251.

    CAS  Google Scholar 

  • Norziah, M. H., Foo, S. L., and Karim, A. A. 2006. Rheological studies on mixtures of agar (Gracilaria changii) and κ-carrageenan. Food Hydrocolloids 20: 204–217.

    CAS  Google Scholar 

  • Oakenfull, D. G. 1984. A method for using measurements of shear modulus to estimate the size and thermodynamic stability of junction zones in noncovalently cross-linked gels. J. Food Sci. 49: 1103–1104, 1110.

    Google Scholar 

  • Oakenfull, D. G. 1987. The chemistry of high-methoxyl pectins, in The Chemistry and Technology of Pectin, ed., R. H. Walter Chapter 5, Academic Press, New York.

    Google Scholar 

  • Olsson, C., Stading, M., and Hermansson, A. M. 2000. Rheological influence of nongelling amylopectins on beta-lactoglobulin gel structures. Food Hydrocolloids 14: 473–483.

    CAS  Google Scholar 

  • Olsson, C., Langton, M., and Hermansson, A. M. 2002. Microstructures of beta-lactoglobulin/amylopectin gels on different length scales and their significance for rheological properties. Food Hydrocolloids 16(2): 111–126.

    CAS  Google Scholar 

  • Owen, A. J. and Jones, R. A. L. 1998. Rheology of simultaneously phase separating and gelling biopolymer mixtures. Macromolecules 31: 7336–7339.

    CAS  Google Scholar 

  • Papageorgiou, M., Kasapis, S., and Richardson, R. K. 1994. Steric exclusion phenomena in gellan gelatin systems. 1. Physical-properties of single and binary gels. Food Hydrocolloids 8: 97–112.

    CAS  Google Scholar 

  • Paradossi, G., Chiessi, E., Barbiroli, A., and Fessas, D. 2002. Xanthan and glucomannan mixtures: Synergistic interactions and gelation. Biomaeromoleeules 3: 498–504.

    CAS  Google Scholar 

  • Peniche-Covas, C. A. L., Dev, S. B., Gordon, M., Judd, M., and Kajiwara, K. 1974. The critically branched state in a covalent synthetic system and in the reversible gelation of gelatin. Faraday Discuss. Chem. Soc. 57: 165–180.

    CAS  Google Scholar 

  • Pezron, I., Herning, T., Djabourov, M., and Leblond, J. 1990. Scattering from a biopolymer solution in the sol and gel states: the gelatin example in Physical Networks. Polymers and Gels, eds. W. Burchard and S. B. Ross-Murphy, Chapter 18, Elsevier Applied Science Publishers, Barking, UK.

    Google Scholar 

  • Plashchina, I. G., Fomina, O. A., Braudo, E. E., and Tolstoguzov, V. B. 1979. Creep study of high-esterified pectin gels. I. The creep of saccharose-containing gels. Colloid Poly. Sci. 257: 1180–1187.

    CAS  Google Scholar 

  • Pouzot, M., Nicolai, T., Durand, D., and Benyahia, L. 2004. Structure factor and elasticity of a heat-set globular protein gel. Macromolecules 37:614–620.

    CAS  Google Scholar 

  • Rao, M. A. 1992. Measurement of viscoelastic properties of fluid and semisolid Foods, in Viscoelastic Properties of Foods, eds. M. A. Rao, and Steffe, J. F., Chapter 8, Elsevier Applied Science Publishers, Barking, England.

    Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1993. Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. J. Food Sci. 58: 876–879.

    CAS  Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1995. Rates of structure development during gelation and softening of high-methoxyl pectin-sodium alginate-fructose mixtures. Food Hydrocolloids 9: 229–235.

    CAS  Google Scholar 

  • Rees, D. A. 1969. Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv. Carbohydr. Chem. Biochem. 24: 267–332.

    CAS  Google Scholar 

  • Rees, D. A. 1972. Polysaccharide gels—a molecular view. Chemistry and Industry, 19: 630–636.

    Google Scholar 

  • Richardson, R. K. and Ross-Murphy, S. B. 1981a. Mechanical properties of globular protein gels: 1. Incipient gelation behaviour. Int. J. Biol. Macromol. 3: 315–322.

    CAS  Google Scholar 

  • Richardson, R. K. and Ross-Murphy, S. B. 1981b. Mechanical properties of globular protein gels. II: Concentration, pH and ionic strength dependence. British Poly. J. 13: 11–16.

    CAS  Google Scholar 

  • Richardson, P. H., Clark, A. H., Russell, A. L., Aymard, P. and Norton, I. T. 1999. Galactomannan gelation: A thermal and rheological investigation analyzed using the cascade model. Macromolecules 32(5): 1519–1527.

    CAS  Google Scholar 

  • Richter, S., Boyko, V., Matzker, R., and Schroter, K. 2004. Gelation studies: Comparison of the critical exponents obtained by dynamic light scattering and rheology, 2(a)—A thermoreversible gelling system: mixtures of xanthan gum and locust-bean gum. Macromolecular Rapid Communications 25(16): 1504–1509.

    CAS  Google Scholar 

  • Rhim, J. W., Nunes, R. V., Jones, V. A., and Swartzel, K. R. 1989. Determination of kinetic parameters using linearly increasing temperature. J. Food Sci. 54: 446–450.

    CAS  Google Scholar 

  • Rodd, A. B., Cooper-White, J., Dunstan, D. E., and Boger, D. V. 2001. Gel point studies for chemically modified biopolymer networks using small amplitude oscillatory rheometry. Polymer 42(1): 185–198.

    CAS  Google Scholar 

  • Rodriguez-Hernandez, A. I. and Tecante, A. 1999. Dynamic viscoelastic behavior of gellan-iotacarrageenan and gellan-xanthan gels. Food Hydrocolloids 13: 59–64.

    Google Scholar 

  • Ross-Murphy, S. B. 1991a. The estimation ofjunction zone size from geltime measurements. Carbohydr. Polym. 14: 281–294.

    Google Scholar 

  • Ross-Murphy, S. B. 1991b. Incipient behaviour of gelatin gels. Rheologica Acta 30: 401–411.

    CAS  Google Scholar 

  • Sanchez, C., Schmitt, C., Babak, V. G., and Hardy, J. 1997. Rheology of whey protein isolate xanthan mixed solutions and gels. Effect of pH and xanthan concentration. Nahrung 41: 336–343.

    CAS  Google Scholar 

  • Scanlan, J. C. and Winter, H. H. 1991. Composition dependence of the viscoelasticity of end-linking poly(dimethylsiloxane) at the gel point. Macromolecules 24: 47–54.

    CAS  Google Scholar 

  • Schorsch, C., Garnier, C., and Doublier, J. L. 1997. Viscoelastic properties of xanthan/galactomannan mixtures: comparison of guar gum with locust bean gum. Carbohydr. Polym. 34: 165–175.

    CAS  Google Scholar 

  • Schultz, R. K. and Myers, R. R. 1969. The chemorheology of poly(vinyl alcohol)-borate gels. Macromolecules 2: 281–285.

    CAS  Google Scholar 

  • Shih W-H, Shih W. Y„ Kim, S-I, Liu, J., and Aksay, I. A. 1990. Scaling behavior of the elastic properties of colloidal gels. Physical Review A 42(8): 4772–4779.

    CAS  Google Scholar 

  • Shim, J. and Mulvaney, S. J. 2001. Effect of heating temperature, pH, concentration and starch/whey protein ratio on the viscoelastic properties of com starch/whey protein mixed gels. J. Sci. Food Agric. 81: 706–717.

    CAS  Google Scholar 

  • Simeone, M., Sibillo, V., Tassieri, M., and Guido, S. 2002. Shear-induced clustering of gelling droplets in aqueous biphasic mixtures of gelatin and dextran. J. Rheol. 46: 1263–1278.

    CAS  Google Scholar 

  • Simeone, M., Tassieri, M., Sibillo, V., and Guido, S. 2005. Effect of sol-gel transition on shear-induced drop deformation in aqueous mixtures of gellan and kappa-carrageenan. J. Colloid Interface Sci. 281: 488–494.

    CAS  Google Scholar 

  • Sperling, L. H. 1986. Introduction to Physical Polymer Science, John Wiley, New York.

    Google Scholar 

  • Stading, M. and Hermansson, A. M. 1990. Viscoelastic behaviour of β-lactoglobulin gel structures. Food Hydrocolloids 4: 121–135.

    CAS  Google Scholar 

  • Stading, M. and Hermansson, A. M. 1993. Rheological behaviour of mixed gels of κ-carrageenan-locust bean gum. Carbohydr. Polym. 22: 49–56.

    CAS  Google Scholar 

  • Stanley, D. W., Aguilera, J. M., Baker, K. W., and Jackman, R. L. 1998. Structure/property relationships of foods as affected by processing and storage, in Phase/State Transitions in Foods: Chemical, Rheological and Structural Changes, eds. M. A. Rao and R. W. Hartel, pp. 1–56, Marcel Dekker, Inc., NY.

    Google Scholar 

  • Stauffer, D., Coniglio, A., and Adam, M. 1982. Gelation and critical phenomena. Adv. Polymer Sci. 44: 103–158.

    CAS  Google Scholar 

  • Stokes, J. R., Wolf, B., and Frith, W. J. 2001. Phase-separated biopolymer mixture rheology: prediction using a viscoelastic emulsion model. J. Rheol. 45: 1173–1191.

    CAS  Google Scholar 

  • Syrbe, A., Femandes, P. B., Dannenberg, F., Bauer, W. J., and Klostermeyer, H. 1995. Whey protein-polysaccharide mixtures: polymer incompatibility and its application, in Food Macromolecules and Colloids, eds. E. Dickinson and D. Lorient, pp. 328–339, The Royal Society of Chemistry, London.

    Google Scholar 

  • Takagi, I. and Simidu, W. 1972. On rheological properties and structure of kamaboko. I. Application of rubber elasticity theory to kamaboko. Bull. Japan. Soc. Sci. Fish. 38: 299–303.

    Google Scholar 

  • Tavares, C. and Lopes da Silva, J. A. 2003. Rheology of galactomannan-whey protein mixed systems. Int. Dairy J. 13: 699–706.

    CAS  Google Scholar 

  • Tavares, C., Monteiro, S. R., Moreno, N., and Lopes da Silva, J. A. 2005. Does the branching degree of galactomannans influences their effect on whey protein gelation? Colloids and Surfaces A. Physicochemical and Engineering Aspects, pp. 270–271: 213–219.

    Google Scholar 

  • te Nijenhuis, K. 1981. Investigation into the ageing process in gels of gelatin/water systems by the measurement of their dynamic moduli. Part I—phenomenology. Colloid Polym. Sci. 259: 522–535.

    CAS  Google Scholar 

  • te Nijenhuis, K. 1997. Thermoreversible networks. Adv. Polym. Sci. 130: 1–235.

    Google Scholar 

  • te Nijenhuis, K. and Winter, H. H. 1989. Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution. Macromolecules 22: 411–414.

    CAS  Google Scholar 

  • Tobitani, A. and Ross-Murphy, S. B. 1997a. Heat-induced gelation of globular proteins. 1. Model for the effects of time and temperature on the gelation time of BSA. Macromolecules 30: 4845–4854.

    CAS  Google Scholar 

  • Tobitani, A. and Ross-Murphy, S. B. 1997b. Heat-induced gelation of globular proteins. 2. Effect of environmental factors on single component and mixed protein gels. Macromolecules 30: 4855–4862.

    CAS  Google Scholar 

  • Tokita, M., Niki, R., and Hikichi, K. 1984. Percolation theory and elastic modulus of gel. J. Phys. Soc. Japan 53: 480–482.

    CAS  Google Scholar 

  • Tolstoguzov, V. B. 1985. Functional properties of protein-polysaccharide mixtures, in Functional Properties of Food Macromolecules, eds. J. Mitchell and D. A. Ledward, pp. 385–415, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Tolstoguzov, V. B. 2001. Functional properties of food proteins and role of protein-polysaccharide interactions. Food Hydrocolloids 4: 429–468.

    Google Scholar 

  • Treloar, L. R. G. 1975. The Physics of Rubber Elasticity, 3rd ed., Clarendon Press, Oxford, England.

    Google Scholar 

  • Tuinier, R., ten Grotenhuis, E., Holt, C., Timmins, P. A., and de Krui, C. G. 1999. Depletion interaction of casein micelles and an exocellular polysaccharide. Phys. Rev. E 60: 848–856.

    CAS  Google Scholar 

  • Tuinier, R., ten Grotenhuis, E., and de Kruif, C. G. 2000. The effect of depolymerised guar gum on the stability of skim milk. Food Hydrocolloids 14:1–7.

    CAS  Google Scholar 

  • Tung, C.-Y. M. and Dynes, P. J. 1982. Relationship between viscoelastic properties and gelation in thermosetting systems. J. Appl. Polym. Sci. 27: 569–574.

    CAS  Google Scholar 

  • Turquois, T., Taravel, F. R., and Rochas, C. 1993. Synergy of the agarose-carob galactomannan blend inferred from nmr and rheological studies. Carbohydr. Res. 238: 27–38.

    CAS  Google Scholar 

  • Tziboula, A. and Horne, D. S. 1999. Influence of whey protein denaturation on κ-carrageenan gelation. Colloid Surf. B: Biointerfaces 12: 299–308.

    CAS  Google Scholar 

  • Van der Linden, E. and Sagis, L. M. C. 2001. Isotropic force percolation in protein gels. Langmuir 17: 5821–5824.

    Google Scholar 

  • Walkenstrom, P., Panighetti, N., Windhab, E., and Hermansson, A. M. 1998. Effects of fluid shear and temperature on whey protein gels, pure or mixed with xanthan. Food Hydrocolloids 12: 469–479.

    CAS  Google Scholar 

  • Wang, Z.-Y., Zhang, Q.-Z., Konno, M., and Saito, S. 1991. Sol-gel transition of alginate solution by the additions of various divalent cations: critical behavior of relative viscosity. Chem. Phys. Lett. 186(4, 5): 463–466.

    Google Scholar 

  • Wang, S., van Dijk, J. A. P. P., Odijk, T., and Smit, J. A. M. 2001. Depletion induced demixing in aqueous protein-polysaccharide solutions. Biomaeromoleeules 2: 1080–1088.

    CAS  Google Scholar 

  • Watase, M. and Nishinari, K. 1987a. Dynamic viscoelasticity and anomalous thermal behaviour of concentrated agarose gels. Die Makromolekulare Chemie 188: 1177–1186.

    Google Scholar 

  • Watase, M. and Nishinari, K. 1987b. Rheological and thermal properties of carrageenan gels—effect of sulfate content. Die Makromolekulare Chemie 188: 2213–2220.

    CAS  Google Scholar 

  • Watase, M. and Nishinari, K. 1993. Effects of pH and DMSO content on the thermal and rheological properties of high methoxyl pectin-water gels. Carbohydr. Polym. 20: 175–181.

    CAS  Google Scholar 

  • Watase, M., Nishinari, K., Clark, A. H., and Ross-Murphy, S. B. 1989. Differential scanning calorimetry, rheology, X-ray, and NMR of very concentrated agarose gels. Macromolecules 22: 1196–1201.

    CAS  Google Scholar 

  • Weinbreck, F. 2004. Whey protein/Polysaccharide Coacervates: Structure and Dynamics. Ph.D thesis, Utrecht University, The Netherlands.

    Google Scholar 

  • Williams, P.A., Day, D. A., Langdon, M. J., Phillips, O. G., and Nishinari, K. 1991. Synergistic interaction of xanthan gum with glucomannans and galactomannans. Food Hydrocolloids 6: 489–493.

    Google Scholar 

  • Winter, H. H. and Chambon, F. 1986. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 30: 367–382.

    CAS  Google Scholar 

  • Winter, H. H. and Mours, M. 1997. Rheology of polymers near liquid–solid transitions. Adv. Polym. Sci. 134: 165–234.

    CAS  Google Scholar 

  • Winter, H. H., Morganelli, P., and Chambon, F. 1988. Stoichiometry effects on rheology of model polyurethanes at the gel point. Macromolecules 21: 532–535.

    CAS  Google Scholar 

  • Wolf, B., Frith, W. J., Singleton, S., Tassieri, M., and Norton, I. T. 2001. Shear behaviour of biopolymer suspensions with spheroidal and cylindrical particles. Rheol. Acta 40: 238–247.

    CAS  Google Scholar 

  • Wolf, B., Scirocco, R., Frith, W. J., and Norton, I. T. 2000. Shear-induced anisotropic microstructure in phase-separated biopolymer mixtures. Food Hydrocolloids 14: 217–225.

    CAS  Google Scholar 

  • Wu, H. and Morbidelli, M. 2001. A model relating structure of colloidal gels to their elastic properties. Langmuir 17: 1030–1036.

    CAS  Google Scholar 

  • Zasypkin, D. V., Braudo, E. E., and Tolstoguzov, V. B. 1997. Multicomponent biopolymer gels. Food Hydrocolloids 11: 159–170.

    CAS  Google Scholar 

  • Zasypkin, D. V., Dumay, E., and Cheftel, J. C. 1996. Pressure- and heat-induced gelation of mixed β-lactoglobulin/xanthan solutions. Food Hydrocolloids 10: 203–211.

    CAS  Google Scholar 

  • Zhang, J. and Rochas, C. 1990. Interactions between agarose and κ-carrageenans in aqueous solutions. Carbohydr. Polym. 13: 257–271.

    CAS  Google Scholar 

  • Ziegler, G. R. and Rizvi, S. S. H. 1989. Determination of cross-link density in egg white gels from stress relaxation data. J. Food. Sci. 54: 218–219.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anandha Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rao, M. (2014). Rheological Behavior of Food Gels. In: Rheology of Fluid, Semisolid, and Solid Foods. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9230-6_6

Download citation

Publish with us

Policies and ethics