Skip to main content

Introduction: Food Rheology and Structure

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

This chapter contains an introduction to the rheology of foods and the topics covered in the book. The equation of continuity (conservation of mass) and the equation of motion (conservation of momentum) are introduced with the primary objective to point out the origins of those useful relationships and the assumptions made in deriving them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The following books contain much useful information on the science of rheology that should be useful to food professionals.

References

  • Aguilera, J. M. and Stanley, D. W. 1999. Microstructral Principles of Food Processing and Engineering, Aspen Publishers, Gaithersburg, Maryland, USA.

    Google Scholar 

  • Barnes, H. A. and Walters, K. 1985. The yield stress myth? Rheol. Acta 24: 323–326.

    Article  CAS  Google Scholar 

  • Barnes, H. A., Hutton, J. F., and Walters, K. 1989. An Introduction to Rheology, Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. 1960. Transport Phenomena, John Wiley & Sons, New York.

    Google Scholar 

  • Bird, R. B., Armstrong, R. C. and Hassager, O. 1977a. Dynamics of Polymeric Liquids–Fluid Mechanics, John Wiley and Sons, New York.

    Google Scholar 

  • Bird, R. B., Hassager, O., Armstrong, R. C. and Curtiss, C. F. 1977b. Dynamics of Polymeric Liquids–Kinetic Theory, John Wiley and Sons, New York.

    Google Scholar 

  • Chamberlain, E. K. 1996. Characterization of heated and thermally processed cross-linked waxy maize starch utilizing particle size analysis, microscopy and rheology. M. S. Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Chamberlain, E. K. and Rao, M. A. 2000. Concentration dependence of viscosity of acid-hydrolyzed amylopectin solutions. Food Hydrocolloids 14: 163–171.

    Article  CAS  Google Scholar 

  • Clark, A. H. and Ross-Murphy, S. B. 1987. Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci., 83: 57–192.

    Article  CAS  Google Scholar 

  • Dobson, C. M. 2003. Protein folding and misfolding. Nature 426(18): 884–890.

    Article  CAS  Google Scholar 

  • Doublier, J. L. 1975. Propriétés rheologiques et caracteristiques macromoleculaires de solutions aqueuses de galactomannanes. Doctoral thesis, Universite Paris VI, France.

    Google Scholar 

  • Fuoss, R. M. and Strauss, U. P. 1948. Polyelectrolytes. II. Poly-4-vinylpyridonium chloride and poly-4-vinyl-N-n-butylpyridonium bromide. J. Polym. Sci., 3(2): 246–263.

    Article  CAS  Google Scholar 

  • Genovese, D. B. and Rao, M. A. 2003. Apparent viscosity and first normal stress of starch dispersions: role of continuous and dispersed phases, and prediction with the Goddard-Miller model. Appl. Rheol. 13(4): 183–190.

    CAS  Google Scholar 

  • Launay, B., Cuvelier, G. and Martinez-Reyes, S. 1984. Xanthan gum in various solvent conditions: intrinsic viscosity and flow properties. In Gums and Stabilisers for the Food Industry 2, ed. G.O. Phillips, D. J. Wedlock, and P. A. Williams, pp. 79–98, Pergamon Press, London.

    Google Scholar 

  • Launay, B., Doublier, J. L., and Cuvelier, Ci. 1986. Flow properties of aqueous solutions and dispersions of polysaccharides, in Functional Properties of Food Macromolecules, eds. J. R. Mitchell and D. A. Ledward, Ch. 1, pp. 1–78, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Levine, H. and Slade, L. 1992. Glass transition in foods, in Physical Chemistry of Foods, H. G. Schwartzberg and R. W. Hartel, pp. 83–221, Marcel Dekker, New York.

    Google Scholar 

  • Loveday S. M., Rao, M. A., Creamer, L. K. and Singh, H. 2009. Factors affecting rheological characteristics of fibril gels: The case of β-lactoglobulin and α-lactalbumin. J Food Sci. 74(3): R47–R55.

    Article  CAS  Google Scholar 

  • Mandelbrot, B. B. 1982. The Fractal Geometry of Nature, W. H. Freeman, New York.

    Google Scholar 

  • Marangoni, A. G. and Rousseau, D. 1996. Is plastic fat governed by the fractal nature of the fat crystals? J. Am. Oil Chem. Soc. 73(8): 991–994.

    Article  CAS  Google Scholar 

  • Markovitz, H. 1985. Rheology: in the beginning. J. Rheol. 29: 777–798.

    Article  Google Scholar 

  • Mewis, J. 1979. Thixotropy—a general review. J. Non-Newtonian Fluid Mech. 6: 1–20.

    Article  CAS  Google Scholar 

  • Michel, F. 1982. Etude du comportement potentiometrique et viscosimetrique de pectines hautement methylees en presence de saccharose. Doctoral thesis, Universite de Dijon, France.

    Google Scholar 

  • Morris, E. R. and Ross-Murphy, S. B. 1981. Chain flexibility of polysaccharides and glicoproteins from viscosity measurements, in Techniques in Carbohydrate Metabolism, B310, ed. D. H. Northcote, pp. 1–46, Elsevier Science, Amsterdam.

    Google Scholar 

  • Nagai, T. and Yano, T. 1990. Fractal structure of deformed potato starch and its sorption characteristics. J. Food Sci. 55(5): 1334–1337.

    Article  CAS  Google Scholar 

  • Padmanabhan, M. 1995. Measurement of extensional viscosity of viscoelastic liquid foods. J. Food Eng. 25: 311–327.

    Article  Google Scholar 

  • Rahman, M. S. 1997. Physical meaning and interpretation of fractal dimensions of fine particles measured by different methods. J. Food Eng. 32: 447–456.

    Article  Google Scholar 

  • Rao, M. A. 1977a. Rheology of liquid foods—a review. J. Texture Stud. 8: 135–168.

    Article  Google Scholar 

  • Rao, M. A. 1977b. Measurement of flow properties of fluid foods—developments limitations, and interpretation of phenomena. J. Texture Stud. 8: 257–282.

    Article  Google Scholar 

  • Rao, M. A. 1992. Measurement of Viscoelastic Properties of Fluid and Semisolid Foods, in “Viscoelastic Properties of Food,” ed. M. A. Rao and J. F. Steffe, pp. 207–232, Elsevier Applied Science Publishers, New York.

    Google Scholar 

  • Rao, M. A. 2003. Phase transitions, food texture and structure, in Texture in Food, Volume 1: Semi-Solid Foods, ed. B. M. McKenna, pp. 36–62, Woodhead Publishing Ltd., Cambridge, UK.

    Google Scholar 

  • Rao, M. A. 2005. Rheological properties of fluid foods, in Engineering Properties of Foods, eds. M. A. Rao, S. S. H. Rizvi, and A. K. Datta, 3rd ed., pp. 41–99, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Rao, M. A. 2006. Influence of food microstructure on food rheology, in Understanding and Controlling the Microstructure of Complex Foods, ed. D. J. McClements, Woodhead Publishing Ltd., Cambridge, UK. (In Press).

    Google Scholar 

  • Rao, M. A. and Steffe, J. F. 1992. Viscoelastic Properties of Foods, pp. 1–444. Elsevier Applied Science Publishers, New York.

    Google Scholar 

  • Rao M. A., Tattiyakul J., and Liao H. J. 2012. Rheological and thermal properties of starch and starch based biopolymers, Chapter 5, in Starch-Based Polymeric Materials and Nanocomposites: Chemistry, Processing, and Applications, eds: J. Ahmed, B. Tiwari, S. H. Imam, and M. A. Rao, Taylor and Francis Group, Boca Raton, FL.

    Google Scholar 

  • Robinson, G., Ross-Murphy, S.B., and Morris, E.R. 1982. Viscosity-molecular weight relationships, intrinsic chain flexibility and dynamic solution properties of guar galactomannan. Carbohydrate Research 107: 17–32.

    Article  CAS  Google Scholar 

  • Roos, Y. 1995. Characterization of food polymers using state diagrams. J. Food Eng. 24(3): 339–360.

    Article  Google Scholar 

  • Roos, Y. H. 1998. Role of water in phase-transition phenomena in foods, in Phase/State Transitions in Foods, eds. M. A. Rao and R. W., pp. 57–86, New York, Marcel Dekker.

    Google Scholar 

  • Ross-Murphy, S. B. 1984. Rheological Methods, in Biophysical Methods in Food Research, ed. H. W.-S. Chan, pp. 138–199, Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Sherman, P. 1970. Industrial Rheology, Academic Press, New York.

    Google Scholar 

  • Slade, L. and Levine, H. 1998. Selected aspects of glass transition phenomena in baked goods, in Phase/State Transitions in Foods, eds. M. A. Rao and R. W. Härtel, pp. 87–94, Marcel Dekker, New York.

    Google Scholar 

  • Smidsrød, 0. 1970. Solution properties of alginate. Carbohydrate Research, 13: 359.

    Google Scholar 

  • Sperling, L. H. 1986. Introduction to Physical Polymer Science, 1st ed., New York, Wiley.

    Google Scholar 

  • Sperling, L. H. 2001. Introduction to physical polymer science, 3rd ed., New York, John Wiley.

    Google Scholar 

  • Steffe, J. F. 1996. Rheological Methods in Food Process Engineering, 2nd ed., Freeman Press, East Lansing, MI.

    Google Scholar 

  • Tanglertpaibul, T. and Rao, M. A. 1987. Intrinsic viscosity of tomato serum as affected by methods of determination and methods of processing concentrates. J. Food Sci. 52: 1642–1645 & 1688.

    Google Scholar 

  • Tattiyakul, J. 1997. Studies on granule growth kinetics and characteristics of tapioca starch dispersions using particle size analysis and rheological methods. M. S. Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Tschoegl, N. W. 1989. The Phenomenological Theory of Linear Viscoelastic Behavior—An Introduction, Springer-Verlag, New York.

    Book  Google Scholar 

  • Van Wazer, J. R., Lyons, J. W., Kim, K. Y., and Colwell, R. E. 1963. Viscosity and Flow Measurement A Handbook of Rheology, Interscience, New York.

    Google Scholar 

  • Walters, K. 1975. Rheometry, Chapman and Hall, London.

    Google Scholar 

  • Whorlow, R. W. 1980. Rheological Techniques, Halsted Press, New York.

    Google Scholar 

  • Yoo, B., Figueiredo, A. A., and Rao, M. A. 1994. Rheological properties of mesquite seed gum in steady and dynamic shear. Lebens. Wissen, und Techno! 27: 151–157.

    Article  CAS  Google Scholar 

Suggested Reading

  • Bames, H.A., Hutton, J. F., and Walters, K. 1989. An Introduction to Rheology, Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

  • Bird, R. B., Armstrong, R. C., and Hassager, O. 1977a. Dynamics of Polymeric Liquids—Fluid Mechanics, John Wiley and Sons, New York.

    Google Scholar 

  • Bird, R. B., Hassager, O., Armstrong, R. C., and Curtiss, C. F. 1977b. Dynamics of Polymeric Liquids—Kinetic Theory, John Wiley and Sons, New York.

    Google Scholar 

  • Dealy, J. M. 1982. Rheometers for Molten Polymers, Van Nostrand Reinhold Co., New York.

    Book  Google Scholar 

  • Ferry, J. D. 1980. Viscoelastic Properties of Polymers, John Wiley, New York.

    Google Scholar 

  • Macosko, C. W. 1994. Rheology: Principles, Measurements, and Applications, VCH Publishers, New York.

    Google Scholar 

  • Sperling, L. H. 1986. Introduction to Physical Polymer Science, John Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anandha Rao .

Appendix 1-A

Appendix 1-A

Momentum and Heat Transport Equations for Incompressible Fluids

Transport Equations in Vector Notation

The equations of continuity, motion, and energy in vector notation are given here:

$$ \begin{aligned}& \nabla \cdot \text{v}=\text{0} \\& \rho \frac{\text{DV}}{\text{Dt}}=-\nabla p-[\nabla \cdot \tau ]+\rho \ g \\& k{{\nabla }^{2}}T=-[\nabla \cdot q]-[\tau :\nabla \text{V}] \\ \end{aligned} $$

The Equation of Continuity (Bird et al. 1960)

Cartesian coordinates (x, y, z):

$$ \frac{\partial \rho }{\partial t}+\frac{\partial }{\partial x}(\rho {{\nu }_{x}})+\frac{\partial }{\partial y}(\rho {{\nu }_{y}})+\frac{\partial }{\partial z}(\rho {{\nu }_{z}})=0 $$

Source: Bird, R. B., Stewart, W.E., and Lightfort, E.N. 1960. Transport Phenomena, John Wiley and sons, New York.

Cylindrical coordinates (r, θ, z):

$$ \frac{\partial \rho }{\partial t}+\frac{1}{r}\frac{\partial }{\partial r}(\rho r{{v}_{r}})+\frac{1}{r}\frac{\partial }{\partial \theta }(\rho {{v}_{\theta }})+\frac{\partial }{\partial z}(\rho {{v}_{z}})=0 $$

Spherical coordinates (r, θ, ϕ):

$$\frac{\partial \rho }{\partial t}+\frac{1}{{{r}^{2}}}\frac{\partial }{\partial r}(\rho {{r}^{2}}{{v}_{r}})+\frac{1}{r\ \text{Sin}\theta }\frac{\partial }{\partial \theta }(\rho {{v}_{\theta }}\,\text{Sin}\theta )\text{+}\frac{\text{1}}{r\ \text{Sin}\theta }\frac{\partial }{\partial \phi }(\rho {{\text{v}}_{\phi }})\text{=0}$$

Equation of Motion in Rectangular Coordinates (x, y, z) in terms of σ (Bird et al. 1960)

x-component:

$$ \rho \left( \frac{\partial {{v}_{x}}}{\partial t}+{{v}_{x}}\frac{\partial {{v}_{x}}}{\partial x}+{{v}_{y}}\frac{\partial {{v}_{x}}}{\partial y}+{{v}_{z}}\frac{\partial {{v}_{x}}}{\partial z} \right)=-\frac{\partial p}{\partial x}+\left( \frac{\partial {{\sigma }_{xx}}}{\partial x}+\frac{\partial {{\sigma }_{yx}}}{\partial y}+\frac{\partial {{\sigma }_{zx}}}{\partial z} \right)+\rho {{g}_{x}} $$
(A)

y-component:

$$ \rho \left( \frac{\partial {{v}_{y}}}{\partial t}+{{v}_{x}}\frac{\partial {{v}_{y}}}{\partial x}+{{v}_{y}}\frac{\partial {{v}_{y}}}{\partial y}+{{v}_{z}}\frac{\partial {{v}_{y}}}{\partial z} \right)=-\frac{\partial p}{\partial y}+\left( \frac{\partial {{\sigma }_{xy}}}{\partial x}+\frac{\partial {{\sigma }_{yy}}}{\partial y}+\frac{\partial {{\sigma }_{zy}}}{\partial z} \right)+\rho {{g}_{y}} $$
(B)

z-component:

$$ \rho \left( \frac{\partial {{v}_{z}}}{\partial t}+{{v}_{x}}\frac{\partial {{v}_{z}}}{\partial x}+{{v}_{y}}\frac{\partial {{v}_{z}}}{\partial y}+{{v}_{z}}\frac{\partial {{v}_{z}}}{\partial z} \right)=-\frac{\partial p}{\partial z}+\left( \frac{\partial {{\sigma }_{xz}}}{\partial x}+\frac{\partial {{\sigma }_{yz}}}{\partial y}+\frac{\partial {{\sigma }_{zz}}}{\partial z} \right)+\rho {{g}_{y}} $$
(C)

The Equation of Motion in Spherical Coordinates (r, θ, ϕ) in terms of σ (Bird et al. 1960)

r-component:

$$\begin{array}{l}\rho \left( {\frac{{\partial {v_r}}}{{\partial t}} + {v_r}\frac{{\partial {v_r}}}{{\partial r}} + \frac{{{v_\theta }}}{r}\frac{{\partial {v_r}}}{{\partial \theta }} + \frac{{{v_\phi }}}{{r\sin \theta }}\frac{{\partial {v_r}}}{{\partial \phi }}-\frac{{v_\theta ^2 + v_\phi ^2}}{r}} \right)\\\quad = - \frac{{\partial p}}{{\partial r}} + \left( {\frac{1}{{{r^2}}}\;\frac{\partial }{{\partial r}}\left( {r{\sigma ^2}_{rr}} \right) + \frac{1}{{r\;\sin \;\theta }}\frac{\partial }{{\partial \theta }}\;({\sigma _{r\theta }}\;\sin \;\theta )} \right.\\\left. {\quad + \frac{1}{{r\sin \theta }}\frac{{\partial {\sigma_{r\phi }}}}{{\partial \phi }} - \frac{{{\sigma _{\theta \theta }}+ {\sigma _{\phi \phi }}}}{r} + \rho {g_r}} \right)\end{array}$$
(A)

θ-component:

$$ \begin{array}{l}\rho \left( {\frac{{\partial v_\theta }}{{\partial t}} + {v_r}\frac{{\partial v_\theta }}{{\partial r}} + \frac{{{v_\theta }}}{r}\frac{{\partial {v_\theta }}}{{\partial \theta }} + \frac{{{v_\phi }}}{{r\sin \theta }}\frac{{\partial {v_\theta }}}{{\partial \phi }} + \frac{{{v_r}{v_\theta }}}{r} - \frac{{v_\phi ^2\cot \theta }}{r}} \right)\\ \quad= - \frac{1}{r}\frac{{\partial p}}{{\partial \theta }} + \left( {\frac{1}{{{r^2}}}\frac{\partial }{{\partial r}}\left( {{r^2}{\sigma _{r\theta }}} \right) + \frac{1}{{r\sin \theta }}\frac{\partial }{{\partial \theta }}} \right)({\sigma _{\theta \theta }}\sin \theta )\\\left. {\quad + \frac{1}{{r\sin \theta }}\frac{{\partial {\sigma_{\theta \phi }}}}{{\partial \phi }} + \frac{{{\sigma _{r\theta}}}}{r} - \frac{{\cot \theta }}{r}{\sigma _{\phi \phi }}} \right)+ \rho {g_\theta }\end{array} $$
(B)

ϕ-component:

$$\begin{array}{l}\rho \left( {\frac{{\partial {v_\phi }}}{{\partial t}} + {v_r}\frac{{\partial {v_\phi }}}{{\partial r}} + \frac{{{v_\theta }}}{r}\frac{{\partial {v_\phi }}}{{\partial \theta }} + \frac{{{v_\phi }}}{{r\sin \theta }}\frac{{\partial {v_\phi }}}{{\partial \phi }} + \frac{{{v_\phi }{v_r}}}{r} + \frac{{{v_\theta }{v_\phi }}}{r}\cot \theta } \right)\\ \quad= - \frac{1}{{r\sin \theta }}\frac{{\partial p}}{{\partial \phi }} + \left( {\frac{1}{{{r^{\rm{2}}}}}\frac{\partial }{{\partial r}}({r^{\rm{2}}}{\sigma _{r\phi }}) + \frac{1}{r}\;\frac{{\partial {\sigma _{\theta \phi }}}}{{\partial \theta }} + \frac{1}{{r\;\sin \theta }}\frac{{\partial {\sigma _{\phi \phi }}}}{{\partial \phi }}} \right.\\\quad\left. { + \frac{{{\sigma _r}_\phi }}{r} + \frac{{2\cot \theta}}{r}{\sigma _{\theta \phi }}} \right) + \rho {g_\phi }\end{array}$$
(C)

Equation of Motion in Cylindrical Coordinates (r, θ, z) in terms of σ (Bird et al. 1960)

r-component:

$$\begin{array}{l}\rho \left( {\frac{{\partial {v_r}}}{{\partial t}} + {v_r}\frac{{\partial {v_r}}}{{\partial r}} + \frac{{{v_\theta }}}{r}\frac{{\partial {v_r}}}{{\partial \theta }} - \frac{{v_\theta ^2}}{r} + {v_z}\frac{{\partial {v_r}}}{{\partial z}}} \right)\\ \quad= - \frac{{\partial p}}{{\partial r}} + \left( {\frac{1}{r}\frac{\partial }{{\partial r}}(r{\sigma _{rr}}) + \frac{1}{r}\frac{{\partial {\sigma _{r\theta }}}}{{\partial \theta }} - \frac{{{\sigma _{\theta \theta }}}}{{r\,}} + \frac{{\partial {\sigma _{rz}}}}{{\partial z}}} \right) + \rho {g_r}\end{array}$$
(A)

θ-component:

$$\begin{array}{l}\rho \left( {\frac{{\partial {v_\theta }}}{{\partial t}} + {v_r}\frac{{\partial {v_\theta }}}{{\partial r}} + \frac{{{v_\theta }}}{r}\frac{{\partial {v_\theta }}}{{\partial \theta }} + \frac{{{v_r}{v_\theta }}}{r} + {v_z}\frac{{\partial {v_\theta }}}{{\partial z}}} \right)\\\quad = - \frac{1}{r}\frac{{\partial p}}{{\partial \theta }} + \left( {\frac{1}{{{r^{\rm{2}}}}}\frac{\partial }{{\partial r}}({r^{\rm{2}}}{\sigma _{r\theta }}) + \frac{1}{r}\frac{{\partial {\sigma _{\theta \theta }}}}{{\partial \theta }} + \frac{{\partial {\sigma _{\theta z}}}}{{\partial z}}} \right) + \rho {g_\theta }\end{array}$$
(B)

z-component:

$$ \begin{array}{l}\rho \left( {\frac{{\partial {v_z}}}{{\partial t}} + {v_r}\frac{{\partial {v_z}}}{{\partial r}} + \frac{{{v_\theta }}}{r}\frac{{\partial {v_z}}}{{\partial \theta }} + {v_z}\frac{{\partial {v_z}}}{{\partial z}}} \right)\\ = - \frac{{\partial p}}{{\partial z}} + \left( {\frac{1}{r}\frac{\partial }{{\partial r}}(r{\sigma _{rz}}) + \frac{1}{r}\frac{{\partial {\sigma _{\theta z}}}}{{\partial \theta }} + \frac{{\partial {\sigma _{zz}}}}{{\partial z}}} \right) + \rho {g_z}\end{array} $$
(C)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rao, M. (2014). Introduction: Food Rheology and Structure. In: Rheology of Fluid, Semisolid, and Solid Foods. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9230-6_1

Download citation

Publish with us

Policies and ethics