Skip to main content

Two-Component Signalling Systems of M. tuberculosis: Regulators of Pathogenicity and More

  • Chapter
  • First Online:
Dynamic Models of Infectious Diseases

Abstract

Tuberculosis is one of the oldest infectious diseases known to mankind. It is cited in ancient texts by many interesting but dreadful names including “white plague,” “consumption,” and “Yakshma.” The disease is characterized by slow “wasting” of internal systems in the body, primarily respiratory and immune systems hence the name “consumption,” which literally means to consume or use from inside. Clinically, the disease manifestations include persistent, productive and bloody cough, breathlessness and chest pain in case of pulmonary infection. In almost 25 % of cases the infection manifests in extrapulmonary locations, such as bones, central nervous system, peripheral nervous system and genitourinary system. The systemic symptoms, which are manifested in all forms of tuberculosis irrespective of site of infection, include weight loss, chills, night sweat, loss of appetite and fever. The causative agent is disseminated by aerosol droplets released in the air by infected individuals by coughing, sneezing or even speaking. This form of the dissemination is very lethal as a very small bacillary dose is enough to elicit infection and the bacilli can stay viable in air for extended durations of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harries AD (2008) Robert Koch and the discovery of the tubercle bacillus: the challenge of HIV and tuberculosis 125 years later. Int J Tuberc Lung Dis 12(3):241–249

    PubMed  CAS  Google Scholar 

  2. Barker LP et al (1997) Differential trafficking of live and dead Mycobacterium marinum organisms in macrophages. Infect Immun 65(4):1497–1504

    PubMed  CAS  Google Scholar 

  3. Russell DG et al (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10(9):943–948

    PubMed  CAS  Google Scholar 

  4. Mori T et al (2004) Specific detection of tuberculosis infection: an interferon-gamma-based assay using new antigens. Am J Respir Crit Care Med 170(1):59–64

    PubMed  Google Scholar 

  5. McEvoy CR et al (2007) The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 87(5):393–404

    CAS  Google Scholar 

  6. Coros A, DeConno E, Derbyshire KM (2008) IS6110, a Mycobacterium tuberculosis complex-specific insertion sequence, is also present in the genome of Mycobacterium smegmatis, suggestive of lateral gene transfer among mycobacterial species. J Bacteriol 190(9):3408–3410

    PubMed  CAS  Google Scholar 

  7. Haldar S et al (2007) Simplified detection of Mycobacterium tuberculosis in sputum using smear microscopy and PCR with molecular beacons. J Med Microbiol 56(Pt 10):1356–1362

    PubMed  CAS  Google Scholar 

  8. Causse M et al (2011) Comparison of two molecular methods for rapid diagnosis of extrapulmonary tuberculosis. J Clin Microbiol 49(8):3065–3067

    PubMed  Google Scholar 

  9. Miller MB et al (2011) Performance of Xpert MTB/RIF RUO assay and IS6110 real-time PCR for Mycobacterium tuberculosis detection in clinical samples. J Clin Microbiol 49(10):3458–3462

    PubMed  CAS  Google Scholar 

  10. Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13(11):908–914

    PubMed  CAS  Google Scholar 

  11. Wayne LG, Lin KY (1982) Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37(3):1042–1049

    PubMed  CAS  Google Scholar 

  12. Cardona PJ, Ruiz-Manzano J (2004) On the nature of Mycobacterium tuberculosis-latent bacilli. Eur Respir J 24(6):1044–1051

    PubMed  Google Scholar 

  13. Cardona PJ (2009) A dynamic reinfection hypothesis of latent tuberculosis infection. Infection 37(2):80–86

    PubMed  Google Scholar 

  14. Yang Z et al (2011) How dormant is Mycobacterium tuberculosis during latency? A study integrating genomics and molecular epidemiology. Infect Genet Evol 11(5):1164–1167

    PubMed  Google Scholar 

  15. Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163

    PubMed  CAS  Google Scholar 

  16. Sherman DR et al (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A 98(13):7534–7539

    PubMed  CAS  Google Scholar 

  17. Kendall SL et al (2004) The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 84(3–4):247–255

    CAS  Google Scholar 

  18. Betts JC et al (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43(3):717–731

    PubMed  CAS  Google Scholar 

  19. Voskuil MI et al (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198(5):705–713

    PubMed  CAS  Google Scholar 

  20. Taneja NK et al (2010) Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One 5(5):e10860

    PubMed  Google Scholar 

  21. Cole ST et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    PubMed  CAS  Google Scholar 

  22. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    PubMed  CAS  Google Scholar 

  23. Mizuno T (1997) Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 4(2):161–168

    PubMed  CAS  Google Scholar 

  24. Ogura M, Tanaka T (2002) Recent progress in Bacillus subtilis two-component regulation. Front Biosci 7:d1815–d1824

    PubMed  CAS  Google Scholar 

  25. Chao J et al (2010) Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim Biophys Acta 1804(3):620–627

    PubMed  CAS  Google Scholar 

  26. Alber T (2009) Signaling mechanisms of the Mycobacterium tuberculosis receptor Ser/Thr protein kinases. Curr Opin Struct Biol 19(6):650–657

    PubMed  CAS  Google Scholar 

  27. Brosch R et al (2000) Comparative genomics of the mycobacteria. Int J Med Microbiol 290(2):143–152

    PubMed  CAS  Google Scholar 

  28. Stinear TP et al (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18(5):729–741

    PubMed  CAS  Google Scholar 

  29. Wynne JW et al (2010) Resequencing the Mycobacterium avium subsp. paratuberculosis K10 genome: improved annotation and revised genome sequence. J Bacteriol 192(23):6319–6320

    PubMed  CAS  Google Scholar 

  30. Gordon SV et al (2001) Genomics of Mycobacterium bovis. Tuberculosis (Edinb) 81(1–2):157–163

    CAS  Google Scholar 

  31. Garnier T et al (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100(13):7877–7882

    PubMed  CAS  Google Scholar 

  32. Li L et al (2005) The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 102(35):12344–12349

    PubMed  CAS  Google Scholar 

  33. Zheng H et al (2008) Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS One 3(6):e2375

    PubMed  Google Scholar 

  34. Goudreau PN, Stock AM (1998) Signal transduction in bacteria: molecular mechanisms of stimulus-response coupling. Curr Opin Microbiol 1(2):160–169

    PubMed  CAS  Google Scholar 

  35. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26(6):369–376

    PubMed  CAS  Google Scholar 

  36. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70(4):910–938

    PubMed  CAS  Google Scholar 

  37. Parish T et al (2003) Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect Immun 71(3):1134–1140

    PubMed  CAS  Google Scholar 

  38. Zahrt TC, Deretic V (2001) Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci U S A 98(22):12706–12711

    PubMed  CAS  Google Scholar 

  39. Zahrt TC, Deretic V (2000) An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 182(13):3832–3838

    PubMed  CAS  Google Scholar 

  40. Haydel SE et al (2012) The prrAB two-component system is essential for Mycobacterium tuberculosis viability and is induced under nitrogen-limiting conditions. J Bacteriol 194(2):354–361

    PubMed  CAS  Google Scholar 

  41. Fol M et al (2006) Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 60(3):643–657

    PubMed  CAS  Google Scholar 

  42. Rodriguez GM et al (2002) ideR, an essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70(7):3371–3381

    PubMed  CAS  Google Scholar 

  43. Li Y et al (2010) The characterization of conserved binding motifs and potential target genes for M. tuberculosis MtrAB reveals a link between the two-component system and the drug resistance of M. smegmatis. BMC Microbiol 10:242

    PubMed  Google Scholar 

  44. Ewann F et al (2002) Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect Immun 70(5):2256–2263

    PubMed  CAS  Google Scholar 

  45. Graham JE, Clark-Curtiss JE (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96(20):11554–11559

    PubMed  CAS  Google Scholar 

  46. Ewann F, Locht C, Supply P (2004) Intracellular autoregulation of the Mycobacterium tuberculosis PrrA response regulator. Microbiology 150(Pt 1):241–246

    PubMed  CAS  Google Scholar 

  47. Nowak E et al (2006) Structural and functional aspects of the sensor histidine kinase PrrB from Mycobacterium tuberculosis. Structure 14(2):275–285

    PubMed  CAS  Google Scholar 

  48. Dasgupta N et al (2000) Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis 80(3):141–159

    PubMed  CAS  Google Scholar 

  49. Malhotra V et al (2004) Disruption of response regulator gene, devR, leads to attenuation in virulence of Mycobacterium tuberculosis. FEMS Microbiol Lett 231(2):237–245

    PubMed  CAS  Google Scholar 

  50. Park HD et al (2003) Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48(3):833–843

    PubMed  CAS  Google Scholar 

  51. Saini DK, Malhotra V, Tyagi JS (2004) Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett 565(1–3):75–80

    PubMed  CAS  Google Scholar 

  52. Saini DK et al (2004) DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 150(Pt 4):865–875

    PubMed  CAS  Google Scholar 

  53. Wisedchaisri G et al (2005) Structures of Mycobacterium tuberculosis DosR and DosR-DNA complex involved in gene activation during adaptation to hypoxic latency. J Mol Biol 354(3):630–641

    PubMed  CAS  Google Scholar 

  54. Roberts DM et al (2004) Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279(22):23082–23087

    PubMed  CAS  Google Scholar 

  55. Sousa EH et al (2007) DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 16(8):1708–1719

    PubMed  CAS  Google Scholar 

  56. Cho HY et al (2009) Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J Biol Chem 284(19):13057–13067

    PubMed  CAS  Google Scholar 

  57. Lee JM et al (2008) O2- and NO-sensing mechanism through the DevSR two-component system in Mycobacterium smegmatis. J Bacteriol 190(20):6795–6804

    PubMed  CAS  Google Scholar 

  58. Ioanoviciu A et al (2009) DevS oxy complex stability identifies this heme protein as a gas sensor in Mycobacterium tuberculosis dormancy. Biochemistry 48(25):5839–5848

    PubMed  CAS  Google Scholar 

  59. Honaker RW et al (2009) Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect Immun 77(8):3258–3263

    PubMed  CAS  Google Scholar 

  60. Converse PJ et al (2009) Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect Immun 77(3):1230–1237

    PubMed  CAS  Google Scholar 

  61. Wisedchaisri G et al (2008) Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J Mol Biol 378(1):227–242

    PubMed  CAS  Google Scholar 

  62. Gupta RK et al (2009) Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J Med Chem 52(20):6324–6334

    PubMed  CAS  Google Scholar 

  63. Saini DK, Tyagi JS (2005) High-throughput microplate phosphorylation assays based on DevR-DevS/Rv2027c 2-component signal transduction pathway to screen for novel antitubercular compounds. J Biomol Screen 10(3):215–224

    PubMed  CAS  Google Scholar 

  64. Gonzalo-Asensio J et al (2008) PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 3(10):e3496

    PubMed  Google Scholar 

  65. Chao JD et al (2010) Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J Biol Chem 285(38):29239–29246

    PubMed  CAS  Google Scholar 

  66. Pang X et al (2007) Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis. Microbiology 153(Pt 4):1229–1242

    PubMed  CAS  Google Scholar 

  67. Fallow A, Domenech P, Reed MB (2010) Strains of the East Asian (W/Beijing) lineage of Mycobacterium tuberculosis are DosS/DosT-DosR two-component regulatory system natural mutants. J Bacteriol 192(8):2228–2238

    PubMed  CAS  Google Scholar 

  68. Walters SB et al (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60(2):312–330

    PubMed  CAS  Google Scholar 

  69. Perez E et al (2001) An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 41(1):179–187

    PubMed  CAS  Google Scholar 

  70. Lee JS et al (2008) Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host Microbe 3(2):97–103

    PubMed  CAS  Google Scholar 

  71. Frigui W et al (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4(2):e33

    PubMed  Google Scholar 

  72. Ryndak M, Wang S, Smith I (2008) PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 16(11):528–534

    PubMed  CAS  Google Scholar 

  73. Gonzalo Asensio J et al (2006) The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281(3):1313–1316

    PubMed  Google Scholar 

  74. Talaat AM et al (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 101(13):4602–4607

    PubMed  CAS  Google Scholar 

  75. He H et al (2006) MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J Bacteriol 188(6):2134–2143

    PubMed  CAS  Google Scholar 

  76. Zahrt TC et al (2003) Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect Immun 71(12):6962–6970

    PubMed  CAS  Google Scholar 

  77. He H, Zahrt TC (2005) Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence regulator MprA. J Bacteriol 187(1):202–212

    PubMed  CAS  Google Scholar 

  78. Himpens S, Locht C, Supply P (2000) Molecular characterization of the mycobacterial SenX3-RegX3 two-component system: evidence for autoregulation. Microbiology 146(Pt 12):3091–3098

    PubMed  CAS  Google Scholar 

  79. Parish T et al (2003) The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149(Pt 6):1423–1435

    PubMed  CAS  Google Scholar 

  80. Rickman L et al (2004) A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun 314(1):259–267

    PubMed  CAS  Google Scholar 

  81. Roberts G et al (2011) Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis. PLoS One 6(6):e21090

    PubMed  CAS  Google Scholar 

  82. Singh A et al (2006) Dissecting virulence pathways of Mycobacterium tuberculosis through protein–protein association. Proc Natl Acad Sci U S A 103(30):11346–11351

    PubMed  CAS  Google Scholar 

  83. Bhattacharya M, Biswas A, Das AK (2010) Interaction analysis of TcrX/Y two component system from Mycobacterium tuberculosis. Biochimie 92(3):263–272

    PubMed  CAS  Google Scholar 

  84. Bacon J et al (2007) Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology 153(Pt 5):1435–1444

    PubMed  CAS  Google Scholar 

  85. Haydel SE, Clark-Curtiss JE (2004) Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol Lett 236(2):341–347

    PubMed  CAS  Google Scholar 

  86. Haydel SE, Dunlap NE, Benjamin WH Jr (1999) In vitro evidence of two-component system phosphorylation between the Mycobacterium tuberculosis TrcR/TrcS proteins. Microb Pathog 26(4):195–206

    PubMed  CAS  Google Scholar 

  87. Haydel SE, Clark-Curtiss JE (2006) The Mycobacterium tuberculosis TrcR response regulator represses transcription of the intracellularly expressed Rv1057 gene, encoding a seven-bladed beta-propeller. J Bacteriol 188(1):150–159

    PubMed  CAS  Google Scholar 

  88. Haydel SE et al (2002) Expression, autoregulation, and DNA binding properties of the Mycobacterium tuberculosis TrcR response regulator. J Bacteriol 184(8):2192–2203

    PubMed  CAS  Google Scholar 

  89. Shrivastava R, Ghosh AK, Das AK (2009) Intra- and intermolecular domain interactions among novel two-component system proteins coded by Rv0600c, Rv0601c and Rv0602c of Mycobacterium tuberculosis. Microbiology 155(Pt 3):772–779

    PubMed  CAS  Google Scholar 

  90. Shrivastava R, Ghosh AK, Das AK (2007) Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system from Mycobacterium tuberculosis. FEBS Lett 581(9):1903–1909

    PubMed  CAS  Google Scholar 

  91. Shrivastava R et al (2006) Functional insights from the molecular modelling of a novel two-component system. Biochem Biophys Res Commun 344(4):1327–1333

    PubMed  CAS  Google Scholar 

  92. Schnell R, Agren D, Schneider G (2008) 1.9 A structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 12):1096–1100

    PubMed  CAS  Google Scholar 

  93. Morth JP et al (2005) A novel two-component system found in Mycobacterium tuberculosis. FEBS Lett 579(19):4145–4148

    PubMed  CAS  Google Scholar 

  94. Morth JP et al (2004) The crystal and solution structure of a putative transcriptional antiterminator from Mycobacterium tuberculosis. Structure 12(9):1595–1605

    PubMed  CAS  Google Scholar 

  95. Laub MT, Biondi EG, Skerker JM (2007) Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays. Methods Enzymol 423:531–548

    PubMed  CAS  Google Scholar 

  96. Biondi EG et al (2006) A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Mol Microbiol 59(2):386–401

    PubMed  CAS  Google Scholar 

  97. Yamamoto K et al (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280(2):1448–1456

    PubMed  CAS  Google Scholar 

  98. Skerker JM et al (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3(10):e334

    PubMed  Google Scholar 

  99. Gillespie SH, Billington O (1999) Activity of moxifloxacin against mycobacteria. J Antimicrob Chemother 44(3):393–395

    PubMed  CAS  Google Scholar 

  100. Fung-Tomc J et al (2000) In vitro antibacterial spectrum of a new broad-spectrum 8-methoxy fluoroquinolone, gatifloxacin. J Antimicrob Chemother 45(4):437–446

    PubMed  CAS  Google Scholar 

  101. Stover CK et al (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405(6789):962–966

    PubMed  CAS  Google Scholar 

  102. Andries K et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707):223–227

    PubMed  CAS  Google Scholar 

  103. Jia L et al (2005) Simultaneous estimation of pharmacokinetic properties in mice of three anti-tubercular ethambutol analogs obtained from combinatorial lead optimization. J Pharm Biomed Anal 37(4):793–799

    PubMed  CAS  Google Scholar 

  104. Aguilar D et al (2007) Immunological responses and protective immunity against tuberculosis conferred by vaccination of Balb/C mice with the attenuated Mycobacterium tuberculosis (phoP) SO2 strain. Clin Exp Immunol 147(2):330–338

    PubMed  CAS  Google Scholar 

  105. Gardner CA, Acharya T, Pablos-Mendez A (2005) The global alliance for tuberculosis drug development–accomplishments and future directions. Clin Chest Med 26(2):341–347, vii

    PubMed  Google Scholar 

  106. Isaza JP et al (2012) Whole genome shotgun sequencing of one Colombian clinical isolate of Mycobacterium tuberculosis reveals DosR regulon gene deletions. FEMS Microbiol Lett 330(2):113–120

    PubMed  CAS  Google Scholar 

  107. Reed MB et al (2007) The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol 189(7):2583–2589

    PubMed  CAS  Google Scholar 

  108. Sureka K et al (2008) Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One 3(3):e1771

    PubMed  Google Scholar 

  109. Sureka K et al (2007) Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65(2):261–276

    PubMed  CAS  Google Scholar 

  110. Tiwari A et al (2010) The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response. Phys Biol 7(3):036005

    PubMed  Google Scholar 

  111. Forst S et al (1990) In vivo phosphorylation of OmpR, the transcription activator of the ompF and ompC genes in Escherichia coli. J Bacteriol 172(6):3473–3477

    PubMed  CAS  Google Scholar 

  112. Hohenester UM et al (2010) Stepchild phosphohistidine: acid-labile phosphorylation becomes accessible by functional proteomics. Anal Bioanal Chem 397(8):3209–3212

    PubMed  CAS  Google Scholar 

  113. Klumpp S, Krieglstein J (2002) Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem 269(4):1067–1071

    PubMed  CAS  Google Scholar 

  114. Kentner D, Sourjik V (2006) Spatial organization of the bacterial chemotaxis system. Curr Opin Microbiol 9(6):619–624

    PubMed  CAS  Google Scholar 

  115. Kentner D, Sourjik V (2009) Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Mol Syst Biol 5:238

    PubMed  Google Scholar 

  116. Kentner D, Sourjik V (2010) Use of fluorescence microscopy to study intracellular signaling in bacteria. Annu Rev Microbiol 64:373–390

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by financial aid from IISc (Indian Institute of Science); CSIR (Council for Scientific and Industrial Research, New Delhi) and Department of Biotechnology (DBT) to D.K.S. laboratory and a Junior Research Fellowship to R.A. from CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Agrawal, R., Narayan, V.H., Saini, D.K. (2013). Two-Component Signalling Systems of M. tuberculosis: Regulators of Pathogenicity and More. In: Sree Hari Rao, V., Durvasula, R. (eds) Dynamic Models of Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9224-5_4

Download citation

Publish with us

Policies and ethics