Advertisement

Ovarian Reserve and Ovarian Cysts

  • Laurel A. Stadtmauer
  • Alessandra Kovac
  • Ilan Tur-Kaspa
Chapter

Abstract

Ultrasound has become the most widely used and important tool in the diagnosis and treatment of infertility and IVF. Measuring the antral follicle count (AFC) is one of the best predictors for estimating ovarian reserve. This initial ultrasound exam will immediately affect the management of the patient and help determine IVF stimulation protocols. The initial exam also picks up benign and malignant ovarian masses and the most common cysts are covered in the chapter. Doppler modalities of ultrasound allow identification of the direction and magnitude of blood flow and calculation of velocity and can help distinguish benign from malignant masses. Three-dimensional (3D) transvaginal ultrasound (TVS) techniques allow the identification and quantification of hypoechoic regions within a three-dimensional ultrasound (3D) data set and provide a precise estimation of their absolute dimensions, mean diameters, and volumes. Accurate evaluation of size and volume of complex structured follicles is facilitated. This chapter is aimed to review how ultrasound is used to maximize ART outcome by evaluation of the ovary and assessing ovarian reserve.

Keywords

Polycystic Ovary Ovarian Cyst Ovarian Reserve Antral Follicle PCOS Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.Google Scholar
  2. 2.
    Hendriks DI, Mol BW, Bancsi LF, Te Velde ER, Broekmans FI. Antral follicle count in the prediction of poor ovarian reserve and IVF outcome after in vitro fertilization :a meta-analysis and comparison with basal FSH level. Fertil Steril. 2005;83:291–310.PubMedCrossRefGoogle Scholar
  3. 3.
    Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12:685–718.PubMedCrossRefGoogle Scholar
  4. 4.
    Muttukrishna S, McGarrigle H, Wakim R, Khadum I, Ranieri DM, Sethal P. Antral follicle count, antimullerian hormone and inhibin B: predictors of ovarian response in assisted reproductive technology? BJOG. 2005;112:1384–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson NP, Bagrie EM, Coomarasamy A, Bhattacharya S, Shelling AN, Jessop S, Farquhar C, Khan KS. Ovarian reserve tests for predicting fertility outcomes for assisted reproductive technology: The International Systematic Collaboration of Ovarian Reserve Evaluation protocol for a systematic review of ovarian reserve test accuracy. BJOG. 2006;113:1472–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Jayaprakasan K, Deb S, Batcha M, Hopkisson J, Johnson I, Campbell B, et al. The cohort of antral follicles measuring 2–6 mm reflects the quantitative status of ovarian reserve as assessed by serum levels of anti-Mullerian hormone and response to controlled ovarian stimulation. Fertil Steril. 2010;94:1775–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Fratterelli JL, Lauria-Costab DF, Miller BT, Bergh PA, Scott RT. Basal antral follicle number and mean ovarian diameter predict cycle cancellation and ovarian responsiveness in assisted reproductive technology cycles. Fertil Steril. 2000;7:512–7.CrossRefGoogle Scholar
  8. 8.
    Danninger B, Brunner M, Obruca A, Feichtinger W. Prediction of ovarian hyperstimulation syndrome by ultrasound volumetric assessment [corrected] of baseline ovarian volume prior to stimulation. Hum Reprod. 1996;11:1597–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Jayaprakasan K, Hilwah N, Kendall NR, Hopkisson JF, Campbell BK, Johnson IR, et al. Does 3D ultrasound offer any advantage in the pretreatment assessment of ovarian reserve and prediction of outcome after assisted reproduction treatment? Hum Reprod. 2007;22:1932–41.PubMedCrossRefGoogle Scholar
  10. 10.
    van der Stege JG, van der Linden PJ. Useful predictors of ovarian stimulation response in women undergoing in vitro fertilization. Gynecol Obstet Invest. 2001;52:43–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Karande VC. Managing and predicting low response to standard in vitro fertilization therapy: a review of the options. Treat Endocrinol. 2003;2:257–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Muasher SJ, Oehninger S, Simonetti S, Matta J, Ellis LM, Liu HC, Jones GS, Rosenwaks Z. The value of basal and/or stimulated serum gonadotropin levels in prediction of stimulation response and in vitro fertilization outcome. Fertil Steril. 1988;50(2):298–307.PubMedGoogle Scholar
  13. 13.
    Broekmans FJ, Knauff EA, te Velde ER, Macklon NS, Fausser BC. Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metab. 2007;18:58–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Broer SL, Mol BWJ, Hendriks D, Broekmans FJM. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91:705–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Hazout A, Bouchard P, Seifer DB, Aussage P, Junca AM, Cohen-Bacrie P. Serum anti-müllerian hormone/müllerian-inhibiting substance appears to be a more discriminatory marker of assisted reproductive technology outcome than follicle-stimulating hormone, inhibin B, or estradiol. Fertil Steril. 2004;82:1323–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Riggs RM, Duran EH, Baker MW, Kimble TD, Hobeika E, Yin L, Matos-Bodden L, Leader B, Stadtmauer L. Assessment of ovarian reserve with antimullerian hormone: a comparison of the predictive value of antimullerian hormone, follicle-stimulating hormone, inhibin B and age. Am J Obstet Gynecol. 2008;199:202e1–8.CrossRefGoogle Scholar
  17. 17.
    Ocal P, Sahmay S, Cetin M, Irez T, Guralp O, Cepni I. Serum anti-Müllerian hormone and antral follicle count as predictive markers of OHSS in ART cycles. J Assist Reprod Genet. 2011;28:1197–203.PubMedCrossRefGoogle Scholar
  18. 18.
    Hansen KR, et al. Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil Steril. 2011;95:855–64.CrossRefGoogle Scholar
  19. 19.
    Jayaprakasan K, Al-Hasie H, Jayaprakasan R, Campbell B, Hopkisson J, Johnson I, Raine-Fenning N. The three-dimensional ultrasonographic ovarian vascularity of women developing poor ovarian response during assisted reproduction treatment and its predictive value. Fertil Steril. 2009;92(6):1862–9.Google Scholar
  20. 20.
    Lass A, Brinsden P. The role of ovarian volume in reproductive medicine. Hum Reprod Update. 1999;5:256–66.PubMedCrossRefGoogle Scholar
  21. 21.
    McDougall MJ, Tan SL, Jacobs HS. IVF and the ovarian hyperstimulation syndrome. Hum Reprod. 1992;5:597–600.Google Scholar
  22. 22.
    Ata B, Tulandi T. Ultrasound automated volume calculation in reproduction and in pregnancy. Fertil Steril. 2011;95:2163–70. Review.PubMedCrossRefGoogle Scholar
  23. 23.
    Raine-Fenning N, Jayaprakasan K, Clewes J, Joergner I, Bonaki SD, Chamberlain S, et al. SonoAVC: a novel method of automatic volume calculation. Ultrasound Obstet Gynecol. 2008;31:691–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Rodriguez-Fuentes A, Hernandez J, Garcia-Guzman R, Chinea E, Iaconianni L, Palumbo A. Prospective evaluation of automated follicle monitoring in 58 in vitro fertilization cycles: follicular volume as a new indicator of oocyte maturity. Fertil Steril. 2010;93:616–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Valentine L, Ameye L, Savelli L, et al. Adnexal masses difficult to classify as benign or malignant using subjective assessment of grey-scale and Doppler ultrasound findings: logistic regression models do not delp. Ultrasound Obstet Gynecol. 2011;38(4):456–65.CrossRefGoogle Scholar
  26. 26.
    Firouzabadi RD, Sekhavat L, Javedani M. The effect of ovarian cyst aspiration on IVF treatment with GnRH. Arch Gynecol Obstet. 2010;281(3):545–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Okaro E, Condous G, Khalid A, Timmerman D, Ameye L, Van Huffel S, Bourne T. The use of ultrasound-based ‘soft markers’ for the prediction of pelvic pathology in women with chronic pelvic pain, can we reduce the need for laparoscopy? BJOG. 2006;113:251–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Raine-Fenning N, Jayaprakasan K, Deb S. Three –dimensional ultrasonographic characteristics of endometriomata. Ultrasound Obstet Gynecol. 2008;31:718–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Asch E, Levine D. Variations in appearance of endometriomas. J Ultrasound Med. 2007;26:993–1002.PubMedGoogle Scholar
  30. 30.
    Kumfer MC, Schwimer SR, Lebovic J. Transvaginal sonographic appearance of endometriomas: spectrum of findings. J Ultrasound Med. 1992;11:129–33.Google Scholar
  31. 31.
    Somigliana E, Vercellini P, Viganó P, Ragni G, Crosignani PG. Should endometriomas be treated before IVF-ICSI cycles? Hum Reprod Update. 2006;12:57–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Bernardi LA, Pavone ME. Endometriosis and update on management. Womens Health (Lond Engl). 2013;9(3):233–50.CrossRefGoogle Scholar
  33. 33.
    Balen A, Michelmore K. What is polycystic ovary syndrome? Are national views important? Hum Reprod. 2002;17:2219–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Polson DW, Adams J, Wadsworth J, Franks S. Polycystic ovaries–a common finding in normal women. Lancet. 1988;1:870–2.PubMedCrossRefGoogle Scholar
  35. 35.
    Alborzi S, Khodaee R, Parsanejad ME. Ovarian size and response to laparoscopic ovarian electro-cauterization in polycystic ovarian disease. Int J Gynaecol Obstet. 2001;74:269–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Amer SA, Li TC, Bygrave C, Sprigg A, Saravelos H, Cooke ID. An evaluation of the inter-observer and intra-observer variability of the ultrasound diagnosis of polycystic ovaries. Hum Reprod. 2002;17:1616–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Jacobs HS. Polycystic ovaries and polycystic ovary syndrome. Gynecol Endocrinol. 1987;1:113–31. Review.PubMedCrossRefGoogle Scholar
  38. 38.
    Kousta E, White DM, Cela E, McCarthy MI, Franks S. The prevalence of polycystic ovaries in women with infertility. Hum Reprod. 1999;14:2720–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Dewailly D, Gronier H, Poncelet E, Robin G, Leroy M, et al. Diagnosis of polycystic ovary syndrome (PCOS): revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum Reprod. 2011;26:3123–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.Google Scholar
  41. 41.
    Allemand MC, Tummon IS, Phy JL, Foong SC, Dumesic DA, Session DR. Diagnosis of polycystic ovaries by three-dimensional transvaginal ultrasound. Fertil Steril. 2006;85:214–9.PubMedCrossRefGoogle Scholar
  42. 42.
    He LR, Zhou LX, Pan RK, Zhang X. [Clinical significance of counting follicles in diagnosis of polycystic ovary syndrome by the three-dimensional ultrasound imaging with sonography based automated volume calculation method]. Zhonghua Fu Chan Ke Za Zhi. 2011;46:350–4.PubMedGoogle Scholar
  43. 43.
    Kyei-Mensah AA, Lin Tan S, Zaidi J, Jacobs HS. Relationship of ovarian stromal volume to serum androgen concentrations in patients with polycystic ovary syndrome. Hum Reprod. 1998;13:1437–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Järvelä IY, Mason HD, Sladkevicius P, Kelly S, Ojha K, Campbell S, et al. Characterization of normal and polycystic ovaries using three-dimensional power Doppler ultrasonography. J Assist Reprod Genet. 2002;19:582–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Pan HA, Wu MH, Cheng YC, Li CH, Chang FM. Quantification of Doppler signal in polycystic ovary syndrome using three-dimensional power Doppler ultrasonography: a possible new marker for diagnosis. Hum Reprod. 2002;17:201–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Scheffer GJ, Broekmans FJ, Bancsi LF, Habbema JD, Looman CW, Te Velde ER. Quantitative transvaginal two- and three-dimensional sonography of the ovaries: reproducibility of antral follicle counts. Ultrasound Obstet Gynecol. 2002;20:270–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Raine-Fenning N, Jayaprakasan K, Chamberlain S, Devlin L, Priddle H, Johnson I, et al. Automated measurements of follicle diameter: a chance to standardize? Fertil Steril. 2009;91:1469–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Raine-Fenning N, Jayaprakasan K, Deb S, Clewes J, Joergner I, Dehghani Bonaki S, Johnson I. Automated follicle tracking improves measurement reliability in patients undergoing ovarian stimulation. Reprod Biomed Online. 2009;18(5):658–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Deutch TD, Joergner I, Matson DO, Oehninger S, Bocca S, Hoenigmann D, Abuhamad A. Automated assessment of ovarian follicles using a novel three-dimensional ultrasound software. Fertil Steril. 2009;92(5):1562–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Raine-Fenning N, Deb S, Jayaprakasan K, Clewes J, Hopkisson J, Campbell B. Timing of oocyte maturation and egg collection during controlled ovarian stimulation: a randomized controlled trial evaluating manual and automated measurements of follicle diameter. Fertil Steril. 2010;94:184–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Ben-Haroush A, Farhi J, Zahalka Y, Sapir O, Meizner I, Fisch B. Small antral follicle count (2–5 mm) and ovarian volume for prediction of pregnancy in in vitro fertilization cycles. Gynecol Endocrinol. 2011;27(10):748–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Deb S, Jayaprakasan K, Campbell BK, Clewes JS, Johnson IR, Raine-Fenning NJ. Intraobserver and interobserver reliability of automated antral follicle counts made using three-dimensional ultrasound and SonoAVC. Ultrasound Obstet Gynecol. 2009;33:477–83.PubMedCrossRefGoogle Scholar
  53. 53.
    Deb S, Campbell BK, Clewes JS, Raine-Fenning NJ. Quantitative analysis of antral follicle number and size: a comparison of two-dimensional and automated three-dimensional ultrasound techniques. Ultrasound Obstet Gynecol. 2010;35:354–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Jayaprakasan K, Campbell BK, Clewes JS, Johnson IR, Raine-Fenning NJ. Three-dimensional ultrasound improves the interobserver reliability of antral follicle counts and facilitates increased clinical work flow. Ultrasound Obstet Gynecol. 2008;31:439–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Forman RG, Robinson J, Yudkin P, Egan D, Reynolds K, Barlow DH. What is the true follicular diameter: an assessment of the reproducibility of transvaginal ultrasound monitoring in stimulated cycles. Fertil Steril. 1991;56:89–92.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laurel A. Stadtmauer
    • 1
  • Alessandra Kovac
    • 2
  • Ilan Tur-Kaspa
    • 3
  1. 1.Department of Obstetrics and GynecologyEastern Virginia Medical School, Jones Institute for Reproductive MedicineNorfolkUSA
  2. 2.College of Arts and SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.Institute for Human Reproduction (IHR), Department of Obstetrics and GynecologyThe University of ChicagoChicagoUSA

Personalised recommendations