Skip to main content

Ultrasound in Reproductive Medicine: Is It Safe?

  • Chapter
  • First Online:
Ultrasound Imaging in Reproductive Medicine

Abstract

Many technologies have burgeoned and vastly expanded in obstetrics and gynecology over the last half century. Among them, assisted reproductive technology (ART) and ultrasound may be the most widely used in daily practice. Ultrasound is a form of energy with effects in tissues it traverses (bioeffects). The major bioeffects are a rise in temperature (thermal effects) and some effects secondary to the alternating positive and negative pressures of the ultrasound wave (nonthermal or mechanical effects). Two on-screen indices, the thermal (TI) and the mechanical (MI) indices, give the end user an indication of possible thermal and nonthermal changes occurring in real time during the ultrasound scan. While no harmful effects have been described in epidemiological studies in humans, some deleterious results have been demonstrated in animals. Furthermore, most epidemiological studies were performed before 1992, a time when maximal energy (acoustic) output for fetal studies was allowed to be increased and data available on machines used presently are limited. While intensities produced by B-mode, grayscale ultrasound are, most likely, safe, the use of Doppler involves much higher levels of energy. In addition, the very early fetus is known to be more vulnerable to external influences or insults than later in pregnancy. Information on susceptibility of the ovum, pre- or postfertilization, is even scarcer. In addition, knowledge regarding bioeffects and safety of ultrasound by clinical end users is grossly inadequate. While it appears that in vivo exposure to ultrasound at spatial average intensities below 1 W/cm 2, which is arguably the case in ART as well as early gestation, does not adversely affect oocytes/embryos/fetuses, it is advocated to utilize ultrasound only when medically indicated, for the shortest time and at the lowest intensity compatible with accurate diagnosis. Further prospective studies on ultrasound safety in ART and pregnancy are highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donald I, Macvicar J, Brown TG. Investigation of abdominal masses by pulsed ultrasound. Lancet. 1958;1:1188–95.

    Article  CAS  PubMed  Google Scholar 

  2. Testart J, Thebault A, Souderes E, Frydman R. Premature ovulation after ovarian ultrasonography. Br J Obstet Gynaecol. 1982;89:694–700.

    Article  CAS  PubMed  Google Scholar 

  3. Salvesen KA, Vatten LJ, Jacobsen G, et al. Routine ultrasonography in utero and subsequent vision and hearing at primary school age. Ultrasound Obstet Gynecol. 1992;2(243–4):5–7.

    Google Scholar 

  4. Ziskin MC, Petitti DB. Epidemiology of human exposure to ultrasound: a critical review. Ultrasound Med Biol. 1988;14:91–6.

    Article  CAS  PubMed  Google Scholar 

  5. Nyborg WL. Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol. 2001;27:301–33.

    Article  CAS  PubMed  Google Scholar 

  6. Marinac-Dabic D, Krulewitch CJ, Moore Jr RM. The safety of prenatal ultrasound exposure in human studies. Epidemiology. 2002;13:S19–22.

    Article  PubMed  Google Scholar 

  7. Salvesen KA. EFSUMB: safety tutorial: epidemiology of diagnostic ultrasound exposure during pregnancy-European committee for medical ultrasound safety (ECMUS). Eur J Ultrasound. 2002;15:165–71.

    Article  PubMed  Google Scholar 

  8. Abramowicz JS. Prenatal exposure to ultrasound waves: is there a risk? Ultrasound Obstet Gynecol. 2007;29:363–7.

    Article  CAS  PubMed  Google Scholar 

  9. Church CC, Miller MW. Quantification of risk from fetal exposure to diagnostic ultrasound. Prog Biophys Mol Biol. 2007;93:331–53.

    Article  PubMed  Google Scholar 

  10. Abramowicz JS, Fowlkes JB, Stratmeyer ME, Ziskin MC. Epidemiology of ultrasound bioeffects. In: Sheiner E, editor. Textbook of epidemiology in perinatology. New York: Nova Science Publishers, Inc.; 2010.

    Google Scholar 

  11. FDA, Center for Devices and Radiological Health. 501(k) guide for measuring and reporting acoustic output of diagnostic ultrasound medical devices; 1985. http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/510kClearances/default.htm. Accessed on March 2013.

  12. US Food and Drug Administration (FDA). Diagnostic ultrasound guidance update. Rockville: Center for Devices and Radiological Health; 1987.

    Google Scholar 

  13. AIUM/NEMA. American Institute of Ultrasound in Medicine and the National Electrical Manufacturers’ Association. Standard for real-time display of thermal and mechanical acoustic output indices on diagnostic ultrasound devices. Laurel/Rosslyn: American Institute of Ultrasound in Medicine (AIUM); 1992.

    Google Scholar 

  14. Insana MF. Sound attenuation in tissue. In: Goldman IW, Fowlkes JB, editors. Medical CT and ultrasound: current technology and applications. College Park: American Association of Physicists in Medicine; 1995.

    Google Scholar 

  15. Henderson J, Willson K, Jago JR, Whittingham TA. A survey of the acoustic outputs of diagnostic ultrasound equipment in current clinical use. Ultrasound Med Biol. 1995;21:699–705.

    Article  CAS  PubMed  Google Scholar 

  16. Martin K. The acoustic safety of new ultrasound technologies. Ultrasound. 2010;18:110–8.

    Article  Google Scholar 

  17. Duck FA, Henderson J. Acoustic output of modern instruments: is it increasing? In: Barnett SB, Kossoff G, editors. Safety of diagnostic ultrasound. New York/London: The Parthenon Publishing Group; 1998.

    Google Scholar 

  18. Jago JR, Henderson J, Whittingham TA, Willson K. How reliable are manufacturer’s reported acoustic output data? Ultrasound Med Biol. 1995;21:135–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu WH, Miller MW, Cox C. Lack of increase in cell transformation frequency of C3H cells after exposure to pulsed ultrasound. Ultrasonics. 1991;29:81–4.

    Article  CAS  PubMed  Google Scholar 

  20. Church CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol. 2002;28:1349–64.

    Article  PubMed  Google Scholar 

  21. Barnett SB, ter Haar GR, Ziskin MC, Nyborg WL, Maeda K, Bang J. Current status of research on biophysical effects of ultrasound. Ultrasound Med Biol. 1994;20:205–18.

    Article  CAS  PubMed  Google Scholar 

  22. Abbott JG. Rationale and derivation of MI and TI–a review. Ultrasound Med Biol. 1999;25:431–41.

    Article  CAS  PubMed  Google Scholar 

  23. Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev. 2008;60:1103–16.

    Article  CAS  PubMed  Google Scholar 

  24. O’Brien Jr WD. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007;93:212–55.

    Article  PubMed Central  PubMed  Google Scholar 

  25. NCRP. (National Council on Radiation Protection and Measurements). Exposure criteria for medical diagnostic ultrasound: II. Criteria based on all known mechanisms. Report No. 140. Bethesda; 2002.

    Google Scholar 

  26. Sikov MR. Effect of ultrasound on development. Part 1: introduction and studies in inframammalian species. Report of the bioeffects committee of the American Institute of Ultrasound in Medicine. J Ultrasound Med. 1986;5:577–83.

    CAS  PubMed  Google Scholar 

  27. Sikov MR. Effect of ultrasound on development. Part 2: studies in mammalian species and overview. J Ultrasound Med. 1986;5:651–61.

    CAS  PubMed  Google Scholar 

  28. Stratmeyer ME, Christman CL. Biological effects of ultrasound. Women Health. 1982;7:65–81.

    Article  CAS  PubMed  Google Scholar 

  29. National Council on Radiation Protection and Measurements. Biological effects of ultrasound: mechanisms and clinical implications. Bethesda: National Council on Radiation; 1984.

    Google Scholar 

  30. Stewart HF, Stratmeyer ME. An overview of ultrasound theory, measurement, medical applications and biological effects. US Department of Health and Human Services Publications; FDA 82-8190, US Government Printing Office: 1982.

    Google Scholar 

  31. Thomenius KE, Lewin PA. Ultrasound bioeffects 1991. Ultrasound Q. 1991;9:111–37.

    Article  Google Scholar 

  32. Dickey RP. Doppler ultrasound investigation of uterine and ovarian blood flow in infertility and early pregnancy. Hum Reprod Update. 1997;3:467–503.

    Article  CAS  PubMed  Google Scholar 

  33. Engels V, Sanfrutos L, Perez-Medina T, et al. Periovulatory follicular volume and vascularization determined by 3D and power Doppler sonography as pregnancy predictors in intrauterine insemination cycles. J Clin Ultrasound. 2011;39:243–7.

    Article  PubMed  Google Scholar 

  34. Sheiner E, Hackmon R, Shoham-Vardi I, et al. A comparison between acoustic output indices in 2D and 3D/4D ultrasound in obstetrics. Ultrasound Obstet Gynecol. 2007;29:326–8.

    Article  CAS  PubMed  Google Scholar 

  35. Marsal K. The output display standard: has it missed its target? Ultrasound Obstet Gynecol. 2005;25:211–4.

    Article  CAS  PubMed  Google Scholar 

  36. Sheiner E, Abramowicz JS. Clinical end users worldwide show poor knowledge regarding safety issues of ultrasound during pregnancy. J Ultrasound Med. 2008;27:499–501.

    PubMed  Google Scholar 

  37. Akhtar W, Arain MA, Ali A, et al. Ultrasound biosafety during pregnancy: what do operators know in the developing world?: national survey findings from Pakistan. J Ultrasound Med. 2011;30:981–5.

    PubMed  Google Scholar 

  38. Sharon N, Shoham-Vardi I, Aricha-Tamir B, Abramowicz JS, Sheiner E. [What do ultrasound performers in Israel know regarding safety of ultrasound, in comparison to the end users in the United States?]. Harefuah. 2012;151:146–9, 90.

    PubMed  Google Scholar 

  39. Bagley J, Thomas K, DiGiacinto D. Safety practices of sonographers and their knowledge of the biologic effects of sonography. J Diagn Med Sonography. 2011;27:252–61.

    Article  Google Scholar 

  40. Houston LE, Allsworth J, Macones GA. Ultrasound is safe… right?: resident and maternal-fetal medicine fellow knowledge regarding obstetric ultrasound safety. J Ultrasound Med. 2011;30:21–7.

    PubMed  Google Scholar 

  41. Nyborg WL. History of the American Institute of Ultrasound in Medicine’s efforts to keep ultrasound safe. J Ultrasound Med. 2003;22:1293–300.

    PubMed  Google Scholar 

  42. Karagoz I, Kartal MK. A new safety parameter for diagnostic ultrasound thermal bioeffects: safe use time. J Acoust Soc Am. 2009;125:3601–10.

    Article  CAS  PubMed  Google Scholar 

  43. Ziskin MC. The thermal dose index. J Ultrasound Med. 2010;29:1475–9.

    PubMed  Google Scholar 

  44. Bigelow TA, Church CC, Sandstrom K, et al. The thermal index: its strengths, weaknesses, and proposed improvements. J Ultrasound Med. 2011;30:714–34.

    PubMed  Google Scholar 

  45. Queenan JT, O’Brien GD, Bains LM, Simpson J, Collins WP, Campbell S. Ultrasound scanning of ovaries to detect ovulation in women. Fertil Steril. 1980;34:99–105.

    CAS  PubMed  Google Scholar 

  46. Vesper B, Schulte HR. [Ultrasonic follow-up check of overstimulation by gonadotrophin therapy (author’s transl)]. Zentralbl Gynakol. 1980;102:791–6.

    CAS  PubMed  Google Scholar 

  47. Lenz S, Lauritsen JG, Kjellow M. Collection of human oocytes for in vitro fertilisation by ultrasonically guided follicular puncture. Lancet. 1981;1:1163–4.

    Article  CAS  PubMed  Google Scholar 

  48. Renaud R, Ehret C, Dervain I, Plas-Roser S, Aron C, Spira A. [Ovarian sonography: a new way of monitoring ovulation induction treatments]. Bull Acad Natl Med. 1981;165:353–8.

    CAS  PubMed  Google Scholar 

  49. Bologne R, Demoulin A, Schaaps JP, Hustin J, Lambotte R. [Influence of ultrasonics on the fecundity of female rats]. C R Seances Soc Biol Fil. 1983;177:381–7.

    CAS  PubMed  Google Scholar 

  50. Demoulin A, Bologne R, Hustin J, Lambotte R. Is ultrasound monitoring of follicular growth harmless? Ann N Y Acad Sci. 1985;442:146–52.

    Article  CAS  PubMed  Google Scholar 

  51. Quereux C, Mazili ML, Desroches A, et al. Does ultrasound have an adverse effect on the fertility of women? J Gynecol Obstet Biol Reprod (Paris). 1986;15:159–64.

    CAS  Google Scholar 

  52. Feichtinger W, Putz M, Kemeter P. [Transvaginal Doppler sonography for measuring blood flow in the pelvis]. Ultraschall Med. 1988;9:30–6.

    Article  CAS  PubMed  Google Scholar 

  53. Deutinger J, Reinthaller A, Bernaschek G. Transvaginal pulsed Doppler measurement of blood flow velocity in the ovarian arteries during cycle stimulation and after follicle puncture. Fertil Steril. 1989;51:466–70.

    CAS  PubMed  Google Scholar 

  54. Fleischer AC. Ultrasound imaging–2000: assessment of utero-ovarian blood flow with transvaginal color Doppler sonography; potential clinical applications in infertility. Fertil Steril. 1991;55:684–91.

    CAS  PubMed  Google Scholar 

  55. Campbell S, Bourne TH, Waterstone J, et al. Transvaginal color blood flow imaging of the periovulatory follicle. Fertil Steril. 1993;60:433–8.

    CAS  PubMed  Google Scholar 

  56. Abramowicz JS, Jaffe R, Pierson R. Transvaginal color Doppler assessment of uterine and ovarian blood flow during normal and abnormal cycles. In: Jaffe R, Pierson R, Abramowicz JS, editors. Imaging in infertility and reproductive endocrinology. Philadelphia: J.B. Lippincott; 1994.

    Google Scholar 

  57. Altundag M, Levi R, Adakan S, et al. Intraovarian stromal artery Doppler indices in predicting ovarian response. J Reprod Med. 2002;47:886–90.

    PubMed  Google Scholar 

  58. Jarvela IY, Sladkevicius P, Kelly S, Ojha K, Campbell S, Nargund G. Quantification of ovarian power Doppler signal with three-dimensional ultrasonography to predict response during in vitro fertilization. Obstet Gynecol. 2003;102:816–22.

    Article  PubMed  Google Scholar 

  59. Merce LT, Gomez B, Engels V, Bau S, Bajo JM. Intraobserver and interobserver reproducibility of ovarian volume, antral follicle count, and vascularity indices obtained with transvaginal 3-dimensional ultrasonography, power Doppler angiography, and the virtual organ computer-aided analysis imaging program. J Ultrasound Med. 2005;24:1279–87.

    PubMed  Google Scholar 

  60. Marret H, Brewer M, Giraudeau B, Tranquart F, Voelker K, Satterfield W. Ovine model to evaluate ovarian vascularization by using contrast-enhanced sonography. Comp Med. 2005;55:150–5.

    CAS  PubMed  Google Scholar 

  61. Marret H, Brewer M, Giraudeau B, Tranquart F, Satterfield W. Assessment of cyclic changes of microvessels in ovine ovaries using Sonovue contrast-enhanced ultrasound. Ultrasound Med Biol. 2006;32:163–9.

    Article  PubMed  Google Scholar 

  62. Duck FA, Starritt HC, ter Haar GR, Lunt MJ. Surface heating of diagnostic ultrasound transducers. Br J Radiol. 1989;62:1005–13.

    Article  CAS  PubMed  Google Scholar 

  63. Gleicher N, Friberg J, Fullan N, et al. EGG retrieval for in vitro fertilisation by sonographically controlled vaginal culdocentesis. Lancet. 1983;2:508–9.

    Article  CAS  PubMed  Google Scholar 

  64. Heyner S, Abraham V, Wikarczuk ML, Ziskin MC. Effects of ultrasound on ovulation in the mouse. Gamete Res. 1989;22:333–8.

    Article  CAS  PubMed  Google Scholar 

  65. Heyner S, Abraham V, Wikarczuk ML, Ziskin MC. Effects of ultrasound on DNA and RNA synthesis in preimplantation mouse embryos. Mol Reprod Dev. 1990;25:209–14.

    Article  CAS  PubMed  Google Scholar 

  66. Mahadevan M, Chalder K, Wiseman D, Leader A, Taylor PJ. Evidence for an absence of deleterious effects of ultrasound on human oocytes. J In Vitro Fert Embryo Transf. 1987;4:277–80.

    Article  CAS  PubMed  Google Scholar 

  67. Williams SR, Rothchild I, Wesolowski D, Austin C, Speroff L. Does exposure of preovulatory oocytes to ultrasonic radiation affect reproductive performance? J In Vitro Fert Embryo Transf. 1988;5:18–21.

    Article  CAS  PubMed  Google Scholar 

  68. Kerin JF. Determination of the optimal timing of insemination in women. In: Richardson D, Joyce D, Symonds M, editors. Frozen human semen. London: Royal College of Obstetrics and Gynaecology; 1979. p. 105–32.

    Google Scholar 

  69. Brent RL, Beckman DA, Landel CP. Clinical teratology. Curr Opin Pediatr. 1993;5:201–11.

    Article  CAS  PubMed  Google Scholar 

  70. Takeuchi H, Nakazawa T, Kumakiri K, Kusano R. Experimental studies on ultrasonic Doppler method in obstetrics. Acta Obstet Gynaecol Jpn. 1970;17:11–6.

    CAS  PubMed  Google Scholar 

  71. Stolzenberg SJ, Torbit CA, Edmonds PD, Taenzer JC. Effects of ultrasound on the mouse exposed at different stages of gestation: acute studies. Radiat Environ Biophys. 1980;17:245–70.

    Article  CAS  PubMed  Google Scholar 

  72. Stolzenberg SJ, Edmonds PD, Torbit CA, Sasmore DP. Toxic effects of ultrasound in mice: damage to central and autonomic nervous systems. Toxicol Appl Pharmacol. 1980;53:432–8.

    Article  CAS  PubMed  Google Scholar 

  73. Brodal P. Restitution of function after brain damage. In: Brodal P, editor. The central nervous system Structure and function. 4th ed. New York: Oxford University Press; 2010. p. 147–56.

    Google Scholar 

  74. Edwards MJ, Saunders RD, Shiota K. Effects of heat on embryos and foetuses. Int J Hyperthermia. 2003;19:295–324.

    Article  CAS  PubMed  Google Scholar 

  75. Ang ESBC, Gluncic V, Duque A, Schafer ME, Rakic P. Prenatal exposure to ultrasound waves impacts neuronal migration in mice. Proc Natl Acad Sci U S A. 2006;103:12903–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Graham Jr JM, Edwards MJ, Edwards MJ. Teratogen update: gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology. 1998;58:209–21.

    Article  CAS  PubMed  Google Scholar 

  77. Stalberg K, Haglund B, Axelsson O, Cnattingius S, Pfeifer S, Kieler H. Prenatal ultrasound and the risk of childhood brain tumour and its subtypes. Br J Cancer. 2008;98:1285–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Calvert J, Duck F, Clift S, Azaime H. Surface heating by transvaginal transducers. Ultrasound Obstet Gynecol. 2007;29:427–32.

    Article  CAS  PubMed  Google Scholar 

  79. McClain RM, Hoar RM, Saltzman MB. Teratologic study of rats exposed to ultrasound. Am J Obstet Gynecol. 1972;114:39–42.

    CAS  PubMed  Google Scholar 

  80. Sikov MR, Hildebrand BP. Embryotoxicity of ultrasound exposure at nine days of gestation in the rat. In: White D, Braun RE, editors. Ultrasound in medicine. New York: Plenum Press; 1977.

    Google Scholar 

  81. Sikov MR, Hildebrand BP. Effects of ultrasound on the prenatal development of the rat. Part 1. 3.2 MHz continuous wave at nine days of gestation. J Clin Ultrasound. 1976;4:357–63.

    Article  CAS  PubMed  Google Scholar 

  82. Schneider-Kolsky ME, Ayobi Z, Lombardo P, Brown D, Kedang B, Gibbs ME. Ultrasound exposure of the foetal chick brain: effects on learning and memory. Int J Dev Neurosci. 2009;27:677–83.

    Article  PubMed  Google Scholar 

  83. Hussain R, Kimme-Smith C, Tessler FN, Perrella RR, Grant EG, Sandstrom K. Fetal exposure from endovaginal ultrasound examinations in the first trimester. Ultrasound Med Biol. 1992;18:675–9.

    Article  CAS  PubMed  Google Scholar 

  84. Miller MW, Ziskin MC. Biological consequences of hyperthermia. Ultrasound Med Biol. 1989;15:707–22.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Zhou F, Song Y, Ying W, Zhang Y. Long dwell-time exposure of human chorionic villi to transvaginal ultrasound in the first trimester of pregnancy induces activation of caspase-3 and cytochrome C release. Biol Reprod. 2002;67:580–3.

    Article  CAS  PubMed  Google Scholar 

  86. Abramowicz JS, Fowlkes JB, Skelly AC, Stratmeyer ME, Ziskin MC. Conclusions regarding epidemiology for obstetric ultrasound. J Ultrasound Med. 2008;27:637–44.

    PubMed  Google Scholar 

  87. Sheiner E, Shoham-Vardi I, Pombar X, Hussey MJ, Strassner HT, Abramowicz JS. An increased thermal index can be achieved when performing Doppler studies in obstetric sonography. J Ultrasound Med. 2007;26:71–6.

    PubMed  Google Scholar 

  88. AIUM. AIUM practice guideline for the performance of obstetric ultrasound examination. J Ultrasound Med. 2010;29:157–66.

    Google Scholar 

  89. Miller MW, Brayman AA, Abramowicz JS. Obstetric ultrasonography: a biophysical consideration of patient safety–the “rules” have changed. Am J Obstet Gynecol. 1998;179:241–54.

    Article  CAS  PubMed  Google Scholar 

  90. Duck FA. Is it safe to use diagnostic ultrasound during the first trimester? Ultrasound Obstet Gynecol. 1999;13:385–8.

    Article  CAS  PubMed  Google Scholar 

  91. Nelson TR, Fowlkes JB, Abramowicz JS, Church CC. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med. 2009;28:139–50.

    PubMed  Google Scholar 

  92. Safety Group of the British Medical Ultrasound Society (BMUS). Guidelines for the safe use of diagnostic ultrasound equipment. Ultrasound. 2010;18:52–9.

    Article  Google Scholar 

  93. Abramowicz JS. Fetal Doppler: how to keep it safe? Clin Obstet Gynecol. 2010;53:842–50.

    Article  PubMed  Google Scholar 

  94. Abramowicz JS, Sheiner E. Ultrasound bioeffects and safety: what the practitioner should know. In: Fleischer AC, Manning FA, Jeanty P, Romero R, editors. Sonography in obstetrics and gynecology-principles and practice. 7th ed. New York: McGraw-Hill; 2010.

    Google Scholar 

  95. AIUM. AIUM Official Statement. Statement on the safe use of Doppler ultrasound during 11-14 week scans (or earlier in pregnancy); 2011. http://aium.org/officialstatements/42. Accessed on March 2013.

  96. AIUM. AIUM Official Statement. Prudent use in pregnancy; 2012. http://aium.org/officialstatements/33. Accessed on March 2013.

  97. AIUM. AIUM As Low As Reasonably Achievable (ALARA) principle; 2012. http://aium.org/officialstatements/39. Accessed on March 2013.

  98. Ter Haar G. Ultrasound imaging: safety consideration. Interface Focus. 2011;1(14):686–97. doi:10.1098/rsfs.2011.0029. Epub 2011 May 25.

  99. Chervenak FA, McCullough LB. Research on the fetus using Doppler ultrasound in the first trimester: guiding ethical considerations. Ultrasound Obstet Gynecol. 1999;14:161.

    Article  CAS  PubMed  Google Scholar 

  100. Campbell S, Platt L. The publishing of papers on first-trimester Doppler. Ultrasound Obstet Gynecol. 1999;14:159–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques S. Abramowicz MD, FACOG, FAIUM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abramowicz, J.S. (2014). Ultrasound in Reproductive Medicine: Is It Safe?. In: Stadtmauer, L., Tur-Kaspa, I. (eds) Ultrasound Imaging in Reproductive Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9182-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9182-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9181-1

  • Online ISBN: 978-1-4614-9182-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics