Skip to main content

Microstructure Evolution of Copper in Nanoscale Interconnect Features

  • Chapter
  • First Online:
Copper Electrodeposition for Nanofabrication of Electronics Devices

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The evolution of copper microstructure and incorporated impurities was studied using transmission electron microscopy (TEM), secondary ion mass spectroscopy (SIMS), and electrical resistance measurements for narrow (~28–40 nm) and wide Damascene features. Resistance measurements suggest an increasing degree of post-CMP microstructure evolution with anneal as linewidth falls below 100 nm for both “doped” and “pure” electrodeposited Cu. SIMS shows increased levels of incorporated sulfur and chlorine in narrow Cu lines whose concentration distributions appear unaffected by annealing at 350 °C, in contrast to redistribution observed in wider lines. Wide lines exhibit significant grain growth with a high temperature anneal, while little to no grain growth is evident upon anneal in narrow line longitudinal TEM sections. This post-anneal resistance drop and concomitant lack of recrystallization and grain growth in the narrow Cu lines is consistent with a microstructure recovery process, where defects in the Cu lattice are eliminated without appreciable formation and growth of new grains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic J, Wachnik J, Rathore H, Schulz R, Su L, Luce S, Slattery J (1997) Full copper wiring in a sub-0.25 mm cmos ulsi technology. In: Technical digest, IEEE international electron devices meeting, pp 773–776

    Google Scholar 

  2. Andricacos PC, Uzoh C, Duckovic JO, Horkans J, Deligianni H (1998) Damascene copper electroplating for chip interconnections. IBM J Res Dev 42(5):567

    Article  CAS  Google Scholar 

  3. West AC, Mayer S, Reid J (2001) A superfilling model that predicts bump formation. Electrochem Solid State lett 4(7):C50

    Article  CAS  Google Scholar 

  4. Moffat TP, Wheeler D, Huber WH, Josell D (2001) Superconformal electrodeposition of copper. Electrochem Solid State Lett 4(4):C26

    Article  CAS  Google Scholar 

  5. Vivian Feng Z, Li X, Gewirth AA (2003) Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study. J Phys Chem B 107:9415

    Article  Google Scholar 

  6. Akolkar R, Landau U (2004) A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization. J Electrochem Soc 151(11):C702

    Article  CAS  Google Scholar 

  7. Vereecken PM, Binstead RA, Deligianni H, Andricacos PC (2005) The chemistry of additives in damascene copper plating. IBM J Res Dev 49(1):3

    Article  CAS  Google Scholar 

  8. Moffat TP, Wheeler D, Edelstein MD, Josell D (2005) Superconformal film growth: mechanism and quantification. IBM J Res Dev 49(1):19

    Article  CAS  Google Scholar 

  9. Harper JME, Cabral C Jr, Andricacos PC, Gignac L, Noyan IC, Rodbell KP, Hu CK (1999) Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. J Appl Phys 86(5):2516

    Article  CAS  Google Scholar 

  10. Ueno K, Ritzdorf T, Grace S (1999) Seed layer dependence of room-temperature recrystallization in electroplated copper films. J Appl Phys 86(9):4930

    Article  CAS  Google Scholar 

  11. Hau-Riege SP, Thompson CV (2000) In situ transmission electron microscope studies of abnormal grain growth in electroplated copper films. Appl Phys Lett 76(3):309

    Article  CAS  Google Scholar 

  12. Field DP, Dornisch D, Tong HH (2001) Investigating the microstructure-reliability relationship in cu damascene lines. Scripta Mater 45:1069

    Article  CAS  Google Scholar 

  13. Yoon MS, Park YJ, Joo YC (2002) Impurity redistributions in electroplated Cu films during self-annealing. Thin Solid Films 408:230–235

    Google Scholar 

  14. Brongersma SH, Kerr E, Vervoort I, Saerens A, Maex K (2002) Grain growth, stress, and impurities in electroplated Cu. J Mater Res 17(3):582

    Article  CAS  Google Scholar 

  15. Lee H, Wong SS, Dopatin SD (2003) Correlation of stress and texture evolution during self- and thermal annealing of electroplated Cu films. J Appl Phys 93(7):3796

    Article  CAS  Google Scholar 

  16. Wu W, Ernur D, Brongersma SH, Van Hove M, Maex K (2004) Grain growth in copper interconnect lines. Microelectron Eng 76:190

    Article  CAS  Google Scholar 

  17. Liu C-W, Wang Y-L, Tsai M-S, Feng H-P, Chang S-C, Hwang G-J (2005) Effect of plating current density and annealing on impurities in electroplated Cu film. J Vac Sci Technol A 23(4):658

    Article  CAS  Google Scholar 

  18. Stangl M, Acker J, Dittel V, Gruner W, Hoffmann V, Wetzig K (2005) Characterization of electroplated copper self-annealing with investigations focused on incorporated impurities. Microelectron Eng 82:189

    Article  CAS  Google Scholar 

  19. Zhang W, Brongersma SH, Heylen N, Beyer G, Vandervorst W, Maex K (2005) Geometry effect on impurity incorporation and grain growth in narrow copper lines. J Electrochem Soc 152(12):C832

    Article  CAS  Google Scholar 

  20. Zhang W, Brogersma SH, Conard T, Wu W, Van Hove M, Vandervorst W, Maex K (2005) Impurity incorporation during copper electrodeposition in the curvature-enhanced accelerator coverage regime. Electrochem Solid-State Lett 8(7):C95

    Article  CAS  Google Scholar 

  21. Stangl M, Acker J, Oswald S, Uhlemann M, Gemming T, Baunack S, Wetzig K (2007) Incorporation of sulfur, chlorine, and carbon into electroplated Cu thin films. Microelectron Eng 84:54

    Article  CAS  Google Scholar 

  22. Steinlesberger G, Engelhardt M, Schindler G, Steinhoegl W, Von Glasow A, Mosig K, Bertagnolli E (2002) Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes. Microelectron Eng 64:409

    Article  CAS  Google Scholar 

  23. Steinhoegl W, Schindler G, Steinlesberger G, Engelhardt M (2002) Size-dependent resistivity of metallic wires in the mesoscopic range. Phys Rev B 66:075414

    Article  Google Scholar 

  24. Schindler G, Steinlesberger G, Engelhardt M, Steinhoegl W (2003) Electrical characterization of copper interconnects with end-of-roadmap feature sizes. Solid-State Electron 47:1233

    Article  CAS  Google Scholar 

  25. Zhang W, Brongersma SH, Li Z, Li D, Richard O, Maex K (2007) Analysis of the size effect in electroplated fine wires and a realistic assessment to model copper resistivity. J Appl Phys 101:063703

    Article  Google Scholar 

  26. Graham RL, Alers GB, Mountsier T, Shamma N, Dhuey S, Cabrini S, Geiss RH, Read DT, Peddeti S (2010) Resistivity dominated by surface scattering in sub-50 nm cu wires. Appl Phys Lett 96:042116

    Article  Google Scholar 

  27. Josell D, Brongersma SH, Tokei Z (2009) Size-dependent resistivity in nanoscale interconnects. Annu Rev Mater Res 39:231

    Article  CAS  Google Scholar 

  28. Li B, Sullivan TD, Lee TC, Badami D (2004) Reliability challenges for copper interconnects. Microelectron Reliab 44:365

    Article  CAS  Google Scholar 

  29. Hu CK, Gignac L, Baker B et al (2007) Impact of Cu microstructure on electromigration reliability. In: International interconnect technology conference, p 93

    Google Scholar 

  30. Nogami T et al (2010) High reliability 32 nm Cu/ULK BEOL based on PVD CuMn seed and its extendibility. In: IEDM, pp 33.5.1–33.5.4

    Google Scholar 

  31. Maekawa K, Mori K, Suzumura N, Honda K, Hirose Y, Asai K, Uedono A, Kojima M (2008) Impact of Al in Cu alloy interconnects on electro and stress migration reliabilities. Microelectron Eng 85(10):2137

    Article  CAS  Google Scholar 

  32. Yokogawa S, Kikuta K, Tsuchiya H, Takewaki T, Suzuki M, Toyoshima H, Kakuhara Y, Kawahara N, Usami T, Ohto K, Fujii K, Tsuchiya Y, Arita K, Motoyama K, Tohara M, Taijii T, Kurokawa T, Sekine M (2008) Tradeoff characteristics between resistivity and reliability for scaled-down cu-based interconnects. IEEE Trans Electron Devices 55(1):350

    Article  CAS  Google Scholar 

  33. Kelly J, Nogami T, van der Straten O, Demarest J, Li J, Penny C, Vo T, Parks C, DeHaven P, Hu CK, Liniger E (2012) Electrolyte additive chemistry and feature size-dependent impurity incorporation for Cu interconnects. J Electrochem Soc 159(10):D563

    Article  CAS  Google Scholar 

  34. Moffat TP, Wheeler D, Josell D (2004) Electrodeposition of copper in the SPS -PEG-Cl additive system. I. Kinetic measurements: influence of SPS. J Electrochem Soc 151:C262

    Google Scholar 

  35. Hayase M, Taketani M, Aizawa K, Hatsuzawa T, Hayabusa K (2002) Copper bottom-up deposition by breakdown of PEG-Cl inhibition. Electrochem Solid-State Lett 5(10):C98

    Article  CAS  Google Scholar 

  36. Hebert KR (2005) Role of chloride ions in suppression of copper electrodeposition by polyethylene glycol. J Electrochem Soc 152(5):C283

    Article  CAS  Google Scholar 

  37. Hirsch PB (1997) Electron microscopy of thin crystals. R. E. Krieger Pub Co, USA

    Google Scholar 

  38. Fukai Y, Mizutani M, Yokota S, Kanazawa M, Miura Y, Watanabe T (2003) Superabundant vacancy-hydrogen clusters in electrodeposited Ni and Cu. J Alloy Compd 356–357:270

    Article  Google Scholar 

  39. Uedono A, Suzuki T, Nakamura T (2004) Vacancy-type defects in electroplated Cu films probed by using a monoenergetic positron beam. J Appl Phys 95:913

    Article  CAS  Google Scholar 

  40. Kitaoka Y, Tono T, Yoshimoto S, Hirahara T, Hasegawa S, Ohba T (2009) Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements. Appl Phys Lett 95:052110

    Article  Google Scholar 

  41. Kim TH, Zhang XG, Nicholson DM, Evans BM, Kulkarni NS, Radhakrishnan B, Kenik EA, Li A-P (2010) Large discrete resistance jump at grain boundary in copper nanowire. Nanoletters 10(8):3096

    Google Scholar 

  42. Reed-Hill RE, Abbaschian R (1994) Physical metallurgy principles, 3rd edn. PWS Publishing Company, USA

    Google Scholar 

  43. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Ltd, The Netherlands

    Google Scholar 

  44. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley Publishing Co, USA

    Google Scholar 

Download references

Acknowledgments

This work was performed by the Research Alliance Teams at various IBM Research and Development Facilities. We are grateful to Dan Edelstein of IBM for critically reviewing the original manuscript. We also acknowledge useful discussions with Dr. Dan Josell of NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelly, J., Parks, C., Demarest, J., Li, J., Penny, C. (2014). Microstructure Evolution of Copper in Nanoscale Interconnect Features. In: Kondo, K., Akolkar, R., Barkey, D., Yokoi, M. (eds) Copper Electrodeposition for Nanofabrication of Electronics Devices. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9176-7_6

Download citation

Publish with us

Policies and ethics