Frontiers of Cu Electrodeposition and Electroless Plating for On-chip Interconnects

Part of the Nanostructure Science and Technology book series (NST)


In the electronics industry, interconnect is defined as a conductive connection between two or more circuit elements. It interconnects elements (transistor, resistors, etc.) on an integrated circuit or components on a printed circuit board. The main function of the interconnect is to contact the junctions and gates between device cells and input/output (I/O) signal pads. These functions require specific material properties. For performance or speed, the metallization structure should have low resistance and capacitance. For reliability, it is important to have the capability of carrying high current density, stability against thermal annealing, resistance against corrosion and good mechanical properties.


Barrier Layer Atomic Layer Deposition Seed Layer Physical Vapour Deposition Chemical Mechanical Polishing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was part resourced by the Nano-EI project within CCAN—the Collaborative Centre for Applied Nanotechnology (, supported by Enterprise Ireland & IDA Ireland (grant no. CC/2009/0002). D. T. acknowledges financial support from Science Foundation Ireland (SFI; grant no. 11/SIRG/B2111).


  1. 1.
    Vadasz LL, Grove AS, Rowe TA, Moore GE (1969) Silicon gate technology. IEEE Spectrum 6:28CrossRefGoogle Scholar
  2. 2.
    Solanki R, Pathangey B (2000) Atomic layer deposition of copper seed layers. Electrochem Solid State Lett 3:479CrossRefGoogle Scholar
  3. 3.
    Wang MT, Lin YC, Chen MC (1998) Barrier properties of very thin Ta and TaN layers against copper diffusion. J Electrochem Soc 145(7):2538CrossRefGoogle Scholar
  4. 4.
    Hu CK, Luther B, Kaufman FB, Hummel J, Uzoh C, Pearson DJ (1995) Copper interconnection integration and reliability. Thin Solid Films 262:84CrossRefGoogle Scholar
  5. 5.
    Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H (1998) Damascene copper electroplating for chip interconnections. IBM J Res Dev 42:567CrossRefGoogle Scholar
  6. 6.
    Kondo K, Hayashi K, Tanaka Z, Yamakawa N (2000) Role of damascene via filling additives—morphology evolution. ECS proceedings on electrochemical processing in ULSI fabrication 8:76Google Scholar
  7. 7.
    Kelly JJ, West AC (1999) Leveling of 200-nm features by organic additives. Electrochem Solid State Lett 2:561CrossRefGoogle Scholar
  8. 8.
    Healy JP, Pletcher D, Goodenough M (1992) The chemistry of the additives in an acid copper electroplating bath: part III. The mechanism of brightening by 4,5-dithia-octane-1, 8-disulphonic acid. J Electroanal Chem 338:179CrossRefGoogle Scholar
  9. 9.
    Abe K, Harada Y, Onoda H (1995) Sub-half micron copper interconnects using reflow of sputtered copper films. In: Proceedings of 13th Intern VLSI Multilevel Interconnect Conference, p 308Google Scholar
  10. 10.
    Cho JSH, Kang HK, Asano I, Wang SS (1992) CVD Cu interconnections for ULSI. In: IEDM Technical Digest, p 297Google Scholar
  11. 11.
    Josell D, Wheeler D, Moffat TP (2002) Superconformal Deposition by Surfactant-Catalyzed Chemical Vapor Deposition. Electrochem Solid State Lett 5:C44–C47CrossRefGoogle Scholar
  12. 12.
    International Technology Roadmap for Semiconductors (2011) update, Accessed 13 Jul 2012
  13. 13.
    Hu CK, Harper JME (1998) Copper interconnects and reliability. Mater Chem Phys 52:5CrossRefGoogle Scholar
  14. 14.
    Li B, Sullivan T, Lee T, Badami D (2004) Reliability challenges for copper interconnects. Microelectron Reliab 44:365Google Scholar
  15. 15.
    Armini S, Vereecken PM (2010) Impact of ‘Terminal Effect’ on Cu plating: theory and experimental evidence. ECS Transactions 25(27):185–194CrossRefGoogle Scholar
  16. 16.
    Groner MD, Fabreguette FH, Elam JW, George SM (2004) Low temperature Al2O3 atomic layer deposition. Chem Mater 16:639–645CrossRefGoogle Scholar
  17. 17.
    Kumar S, Xin HL, Ercius P, Muller DA, Eisenbraun E (2008) ALD growth of a mixed-phase novel barrier for seedless copper electroplating applications. IEEE 2008 International Interconnect Technology Conference (IITC 2008), Proceedings, pp. 96–98Google Scholar
  18. 18.
    Shin J, Waheed A, Agapiou K, Winkenwerder WA, Kim H, Jones RA, Hwang GS, Ekerdt JG (2006) Growth of ultra-thin films of amorphous ruthenium-phosphorus alloys using a single source CVD precursor. J Am Chem Soc 128:16510–16511CrossRefGoogle Scholar
  19. 19.
    Perng D-C, Yeh J-B, Hsu K-C, Wang Y-C (2010) 5 nm amorphous boron and carbon added Ru film as a highly reliable Cu diffusion barrier. Electrochem Solid State Lett 13(8):H290–H293CrossRefGoogle Scholar
  20. 20.
    Yeh J-B, Perng D-C, Hsu K-C (2010) Amorphous RuW film as a diffusion barrier for advanced Cu metallization. J Electrochem Soc 157(8):H810–H814CrossRefGoogle Scholar
  21. 21.
    Koike J, Wada M (2005) Self-forming diffusion barrier layer in Cu–Mn alloy metallization. Appl Phys Letts 87:041911CrossRefGoogle Scholar
  22. 22.
    Li B, Sullivan T, Lee T, Badami D (2004) Reliability challenges for copper interconnects. Microelectron Reliab 44:365Google Scholar
  23. 23.
    Hu C, Gignac L, Rosenberg R (2006) Electromigration of Cu/low dielectric constant interconnects. Microelectron Reliab 46:213Google Scholar
  24. 24.
    Hu CK, Gignac L, Rosenberg R, Liniger E, Rubino J, Sambucetti C, Stamper A, Domenicucci A, Chen X (2003) Reduced Cu interface diffusion by CoWP surface coating. Microelectron Eng 70:406CrossRefGoogle Scholar
  25. 25.
    Gambino J, Wynne J, Gill J, Mongeon S, Meatyard D, Lee B, Bamnolker H, Hall L, Li N, Hernandez M, Little P, Hamed M, Ivanov I, Gan C (2006) Self-aligned metal capping layers for copper interconnects using electroless plating. Microelectron Eng 83:2059CrossRefGoogle Scholar
  26. 26.
    Shacham-Diamand Y, Dubin V, Angyal M (1995) Electroless copper deposition for ULSI. Thin Solid Films 262:93Google Scholar
  27. 27.
    Hsu H–H, Lin K-H, Lin S-J, Yeh J-W (2001) Electroless copper deposition for ultralarge-scale integration. J Electrochem Soc 148:C47CrossRefGoogle Scholar
  28. 28.
    Dubin VM, Shacham-Diamand Y, Zhou B, Vasudev PK, Ting CH (1997) Selective and blanket electroless copper deposition for ultralarge scale integration. J Electrochem Soc 144:898Google Scholar
  29. 29.
    Shacham-Diamand YY (2000) Electroless copper deposition using glyoxylic acid as reducing agent for ultralarge scale integration metallization articles. Electrochem Solid State Lett 3:279CrossRefGoogle Scholar
  30. 30.
    Wang Z, Yaegashi O, Sakaue H, Takahagi T, Shingubara S (2003) Suppression of native oxide growth in sputtered TaN films and its application to Cu electroless plating. J Appl Phys 94:4697CrossRefGoogle Scholar
  31. 31.
    Patterson J, O’Reilly M, Crean GM, Barrett J (1997) Selective electroless copper metallization on a titanium nitride barrier layer. Microelectron Eng 33:65CrossRefGoogle Scholar
  32. 32.
    Shingubara S, Wang Z, Yaegashi O, Obata R, Sakaue H, Takahagi T (2004) Bottom-up fill of copper in deep submicrometer holes by electroless plating. Electrochem Solid State Lett 7:C78CrossRefGoogle Scholar
  33. 33.
    Lee C-H, Lee S-C, Kim J–J (2005) Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS). Electrochim Acta 50:3563CrossRefGoogle Scholar
  34. 34.
    Lee C-H, Lee S-C, Kim J–J (2005) Improvement of electrolessly gap-filled Cu using 2, 2’-Dipyridyl and Bis-(3-sulfopropyl)-disulfide (SPS). Electrochem Solid State Lett 8:C110CrossRefGoogle Scholar
  35. 35.
    Wang Z, Obata R, Sakaue H, Takahagi T, Shingubara S (2006) Bottom-up copper fill with addition of mercapto alkyl carboxylic acid in electroless plating. Electrochim Acta 51:2442CrossRefGoogle Scholar
  36. 36.
    Hasegawa M, Yamachika N, Shacham-Diamand Y, Okinaka Y, Osaka T (2007) Evidence for “superfilling” of submicrometer trenches with electroless copper deposit. Appl Phys Lett 90:101916CrossRefGoogle Scholar
  37. 37.
    Lee C-H, Kim A-R, Koo H-C, Kim J-J (2009) Effect of 2-Mercapto-5-benzimidazolesulfonic acid in superconformal Cu electroless deposition. J Electrochem Soc 156:D207CrossRefGoogle Scholar
  38. 38.
    Yang Z, Wang X, Li N, Wang Z, Wang Z (2011) Design and achievement of a complete bottom-up electroless copper filling for sub-micrometer trenches. Electrochim Acta 56:3317CrossRefGoogle Scholar
  39. 39.
    Moffat TP, Wheeler D, Huber WH, Josell D (2001) Superconformal electrodeposition of copper. Electrochem Solid State Lett 4:C26CrossRefGoogle Scholar
  40. 40.
    Healy JP, Pletcher D, Goodenough M (1992) The chemistry of the additives in an acid copper electroplating bath: part I. Polyethylene glycol and chloride ion. J Electroanal Chem 338:155CrossRefGoogle Scholar
  41. 41.
    Paunovic M, Arndt R (1983) The effect of some additives on electroless copper deposition. J Electrochem Soc 130:794CrossRefGoogle Scholar
  42. 42.
    Paunovic M (1977) Ligand effects in electroless copper deposition. J Electrochem Soc 124:349CrossRefGoogle Scholar
  43. 43.
    Plana D, Campbell AI, Patole SN, Shul G, Dryfe RAW (2010) Kinetics of electroless deposition: the copper-dimethylamine borane system. Langmuir 26:10334CrossRefGoogle Scholar
  44. 44.
    Nagle LC, Rohan JF (2005) Investigation of DMAB oxidation at a gold microelectrode in base. Electrochem Solid State 8:C77Google Scholar
  45. 45.
    Nagle LC, Rohan JF (2006) Ammonia borane oxidation at gold microelectrodes in alkaline solutions. J Electrochem Soc 153:C773Google Scholar
  46. 46.
    Lim T, Koo H-C, Park K-J, Kim M-J, Kim S-K, Kim J–J (2012) Optimization of catalyzing process on Ta substrate for copper electroless deposition using electrochemical method. J Electrochem Soc 159:D142CrossRefGoogle Scholar
  47. 47.
    Kondo K, Matsumoto T, Watanabe K (2004) Role of additives for copper damascene electrodeposition: experimental study on inhibition and acceleration effects. J Electrochem Soc 151:C250CrossRefGoogle Scholar
  48. 48.
    Jin Y, Kondo K, Suzuki Y, Matsumoto T, Barkey DP (2005) Surface adsorption of PEG and Cl additives for copper damascene electrodeposition. Electrochem Solid State Lett 8:C6CrossRefGoogle Scholar
  49. 49.
    Kelly JJ, West AC (1998) Copper deposition in the presence of polyethylene glycol I. Quartz crystal microbalance study. J Electrochem Soc 145:3472CrossRefGoogle Scholar
  50. 50.
    Akolkar R, Landau U (2009) Mechanistic analysis of the “Bottom-Up” fill in copper interconnect metallization. J Electrochem Soc 156:D351CrossRefGoogle Scholar
  51. 51.
    Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford. ISBN 0-19-855645-4Google Scholar
  52. 52.
    Thompson D, unpublished resultsGoogle Scholar
  53. 53.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781CrossRefGoogle Scholar
  54. 54.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586CrossRefGoogle Scholar
  55. 55.
    Tasaki K (1996) Poly(oxyethylene)—water interactions: a molecular dynamics study. J Am Chem Soc 118:8459CrossRefGoogle Scholar
  56. 56.
    Nerngchamnong N, Li Y, Qi D, Jian L, Thompson D, Nijhuis CA (2013) The role of van der Waals forces in the performance of molecular diodes. Nat Nanotechnol 8:113–118CrossRefGoogle Scholar
  57. 57.
    Thompson D, Hermes JP, Quinn AJ, Mayor M (2012) Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures. ACS Nano 6:3007CrossRefGoogle Scholar
  58. 58.
    Gannon G, Larsson JA, Greer JC, Thompson D (2010) Molecular dynamics study of naturally occurring defects in self-assembled monolayer formation. ACS Nano 4:921CrossRefGoogle Scholar
  59. 59.
    Vukovic L, Khatib FA, Drake SP, Madriaga A, Brandenburg KS, Kral P, Onyuksel H (2011) Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc 133:13481 (For a recent example of computer simulations of highly PEG-ylated phospholipids in salt solutions)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Tyndall National InstituteUniversity College Cork, Lee MaltingsCorkIreland

Personalised recommendations