Skip to main content

Hypoxia and the DNA Damage Response

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Gradients of hypoxia occur in most solid tumors. Cells found in these regions are associated with the most aggressive and therapy-resistant fractions of the tumor. Severe levels of hypoxia (< 0.1 % O2) have been found to induce a unique DNA damage response (DDR) that includes both ATR- and ATM-mediated signaling. The consequences of the hypoxia-induced DDR include p53-dependent apoptosis and maintenance of replication fork integrity. Interestingly, the hypoxia-induced DDR occurs in the absence of detectable single- or double-strand breaks and in a background of repressed DNA repair. Inhibition of DNA repair in hypoxic cells has been proposed as a mechanism contributing to the increased genomic instability found in hypoxia. Furthermore, an increasing number of novel agents that target the DDR have been described and some are already undergoing clinical testing. Evidence from preclinical studies suggests that the use of some of these agents would be effective at targeting tumor cells in hypoxic regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ambrose M, Goldstine JV, Gatti RA (2000) Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 16:2154–2164. doi:ddm166 [pii]10.1093/hmg/ddm166

    Google Scholar 

  • Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    PubMed  CAS  Google Scholar 

  • Bartkova J et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    PubMed  CAS  Google Scholar 

  • Bartkova J et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637. doi:nature05268 [pii]10.1038/nature05268

    PubMed  CAS  Google Scholar 

  • Bencokova Z et al (2009) ATM activation and signaling under hypoxic conditions. Mol Cell Biol 29:526–537. doi:10.1128/MCB.01301-08

    PubMed  CAS  Google Scholar 

  • Bindra RS, Glazer PM (2005) Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 569:75–85

    PubMed  CAS  Google Scholar 

  • Bindra RS, Glazer PM (2007) Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 252(1):93–103

    PubMed  CAS  Google Scholar 

  • Bindra RS et al (2005) Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65:11597–11604

    PubMed  CAS  Google Scholar 

  • Bindra RS, Crosby ME,Glazer PM (2007) Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26:249–260. doi:10.1007/s10555-007-9061-3

    PubMed  CAS  Google Scholar 

  • Bouquet F et al (2011) A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci 124:1943–1951. doi:10.1242/jcs.078030

    PubMed  CAS  Google Scholar 

  • Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192. doi:nrc2344 [pii]10.1038/nrc2344

    Google Scholar 

  • Brown KD et al (2003) The mismatch repair system is required for S-phase checkpoint activation. Nat Genet 33:80–84. doi:10.1038/ng1052ng1052 [pii]

    PubMed  CAS  Google Scholar 

  • Cam H, Easton JB, High A, Houghton PJ (2010) mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 40:509–520. doi:10.1016/j.molcel.2010.10.030

    PubMed  CAS  Google Scholar 

  • Chan N et al (2008) Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res 68:605–614. doi:68/2/605 [pii]10.1158/0008-5472.CAN-07-5472

    PubMed  CAS  Google Scholar 

  • Chan N et al (2010) Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res 70:8045–8054. doi:10.1158/0008-5472.CAN-10-2352

    PubMed  CAS  Google Scholar 

  • Charrier JD et al (2011) Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 54:2320–2330. doi:10.1021/jm101488z

    PubMed  CAS  Google Scholar 

  • Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66:9009–9016. doi:66/18/9009[pii]10.1158/0008-5472.CAN-06-0101

    PubMed  CAS  Google Scholar 

  • Chen J et al (1998) Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 2:317–328

    PubMed  CAS  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. doi:10.1016/j.molcel.2010.09.019 S1097–2765(10)00747-1 [pii]

    PubMed  CAS  Google Scholar 

  • Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627. doi:nrm2450 [pii]10.1038/nrm2450

    PubMed  CAS  Google Scholar 

  • Cliby WA et al (1998) Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. Embo J 17:159–169

    PubMed  CAS  Google Scholar 

  • Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961. doi:1208332 [pii]10.1038/sj.onc.1208332

    PubMed  CAS  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

    PubMed  CAS  Google Scholar 

  • Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716

    PubMed  CAS  Google Scholar 

  • Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221–1229. doi:0008-5472.CAN-08-2516 [pii]10.1158/0008-5472.CAN-08-2516

    PubMed  CAS  Google Scholar 

  • Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 16:376–383. doi:1078-0432.CCR-09-1029 [pii]10.1158/1078-0432.CCR-09-1029

    PubMed  CAS  Google Scholar 

  • Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437. doi:nrc2397 [pii]10.1038/nrc2397

    PubMed  CAS  Google Scholar 

  • Di Cintio A, Di Gennaro E, Budillon A (2010) Restoring p53 function in cancer: novel therapeutic approaches for applying the brakes to tumorigenesis. Recent Pat Anticancer Drug Discov 5:1–13. doi:PRA-ABS-Budillon-13 [pii]

    PubMed  CAS  Google Scholar 

  • Di Micco R et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642. doi:10.1038/nature05327

    PubMed  CAS  Google Scholar 

  • Ding L et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075. doi:10.1038/nature07423

    PubMed  CAS  Google Scholar 

  • Economopoulou M et al (2009) Histone H2AX is integral to hypoxia-driven neovascularization. Nat Med 15:553–558. doi:nm.1947 [pii]10.1038/nm.1947

    PubMed  CAS  Google Scholar 

  • El-Deiry WS (2003) The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22:7486–7495. doi:10.1038/sj.onc.12069491206949 [pii]

    PubMed  CAS  Google Scholar 

  • Fallone F, Britton S, Nieto L, Salles B, Muller C (2012) ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene. doi:10.1038/onc.2012.462onc2012462 [pii]

    Google Scholar 

  • Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–4137. doi:gkl550 [pii]10.1093/nar/gkl550

    PubMed  CAS  Google Scholar 

  • Fokas E et al (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3:e441. doi:10.1038/cddis.2012.181cddis2012181 [pii]

    Google Scholar 

  • Freiberg RA, Hammond EM, Dorie MJ, Welford SM, Giaccia AJ (2006a) DNA damage during reoxygenation elicits a Chk2-dependent checkpoint response. Mol Cell Biol 26:1598–1609. doi:10.1128/MCB.26.5.1598–1609

    CAS  Google Scholar 

  • Freiberg RA, Krieg AJ, Giaccia AJ, Hammond EM (2006b) Checking in on hypoxia/reoxygenation. Cell Cycle 5:1304–1307

    CAS  Google Scholar 

  • Gibson SL, Bindra RS, Glazer PM (2005) Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner. Cancer Res 65:10734–10741

    PubMed  CAS  Google Scholar 

  • Gibson SL, Bindra RS, Glazer PM (2006) CHK2-dependent phosphorylation of BRCA1 in hypoxia. Radiat Res 166:646–651. doi:RR0660 [pii]10.1667/RR0660.1

    PubMed  CAS  Google Scholar 

  • Gilad O et al (2010) Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 70:9693–9702. doi:0008-5472.CAN-10-2286 [pii]10.1158/0008-5472.CAN-10-2286

    PubMed  CAS  Google Scholar 

  • Goldberg M et al (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956, doi:10.1038/nature01445nature01445 [pii]

    PubMed  CAS  Google Scholar 

  • Goodarzi AA, Noon AT, Jeggo PA (2009) The impact of heterochromatin on DSB repair. Biochem Soc Trans 37:569–576. doi:BST0370569[pii]10.1042/BST0370569

    PubMed  CAS  Google Scholar 

  • Gorgoulis VG et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    PubMed  CAS  Google Scholar 

  • Graeber TG et al (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1- phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14:6264–6277

    PubMed  CAS  Google Scholar 

  • Graeber TG et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130. doi:nature07986 [pii]10.1038/nature07986

    PubMed  CAS  Google Scholar 

  • Groth A et al (2003) Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. Embo J 22:1676–1687

    PubMed  CAS  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355. doi:319/5868/1352 [pii]10.1126/science.1140735

    PubMed  CAS  Google Scholar 

  • Hammond EM, Giaccia AJ (2004) The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. DNA Repair (Amst) 3:1117–1122. doi:10.1016/j.dnarep.2004.03.035

    CAS  Google Scholar 

  • Hammond EM, Giaccia AJ (2005) The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331:718–725. doi:10.1016/j.bbrc.2005.03.154

    PubMed  CAS  Google Scholar 

  • Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ (2002) Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22:1834–1843

    PubMed  CAS  Google Scholar 

  • Hammond EM, Dorie MJ, Giaccia AJ (2003a) ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278:12207–12213. doi:10.1074/jbc.M212360200

    CAS  Google Scholar 

  • Hammond EM, Green SL, Giaccia AJ (2003b) Comparison of hypoxia-induced replication arrest with hydroxyurea and aphidicolin-induced arrest. Mutat Res 532:205–213

    CAS  Google Scholar 

  • Hammond EM, Dorie MJ, Giaccia AJ (2004) Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res 64:6556–6562. doi:10.1158/0008-5472.CAN-04-1520

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674, doi:10.1016/j.cell.2011.02.013S0092–8674(11)00127-9 [pii]

    PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745. doi:10.1016/j.molcel.2007.11.015

    PubMed  CAS  Google Scholar 

  • Hurley PJ, Wilsker D, Bunz F (2007) Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation. Oncogene 26:2535–2542. doi:10.1038/sj.onc.1210049

    PubMed  CAS  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078. doi:nature08467 [pii] 10.1038/nature08467

    PubMed  CAS  Google Scholar 

  • Jeggo PA, Lobrich M (2007) DNA double-strand breaks: their cellular and clinical impact? Oncogene 26:7717–7719. doi:1210868 [pii]10.1038/sj.onc.1210868

    PubMed  CAS  Google Scholar 

  • Jiang H et al (2009) The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23:1895–1909. doi:gad.1815309 [pii]10.1101/gad.1815309

    PubMed  CAS  Google Scholar 

  • Johnson AB, Denko N, Barton MC (2008) Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 640:174–179. doi:S0027-5107(08)00017-1 [pii]10.1016/j.mrfmmm.2008.01.001

    PubMed  CAS  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    PubMed  CAS  Google Scholar 

  • Kim CY et al (1997) Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res 57:4200–4204

    PubMed  CAS  Google Scholar 

  • Klein TJ, Glazer PM (2010) The tumor microenvironment and DNA repair. Semin Radiat Oncol 20:282–287. doi:S1053-4296(10)00040-8 [pii]10.1016/j.semradonc.2010.05.006

    PubMed  Google Scholar 

  • Koshiji M et al (2005) HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17:793–803. doi:S1097-2765(05)01114-7 [pii]10.1016/j.molcel.2005.02.015

    PubMed  CAS  Google Scholar 

  • Kumareswaran R et al (2012) Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. J Cell Sci 125:189–199. doi:10.1242/jcs.092262

    PubMed  CAS  Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16. doi:10.1038/358015a0

    PubMed  CAS  Google Scholar 

  • Lavin MF, Kozlov S (2007) ATM activation and DNA damage response. Cell Cycle 6:931–942. doi:4180 [pii]

    PubMed  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    PubMed  CAS  Google Scholar 

  • Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133

    PubMed  CAS  Google Scholar 

  • Liu Q et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459

    PubMed  CAS  Google Scholar 

  • Liu SK et al (2008) A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiother Oncol 88:258–268. doi:S0167-8140(08)00210-7 [pii]10.1016/j.radonc.2008.04.005

    PubMed  CAS  Google Scholar 

  • Lu Y, Chu A, Turker MS, Glazer PM (2011) Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol Cell Biol 31:3339–3350. doi:MCB.01121-10 [pii]10.1128/MCB.01121-10

    PubMed  CAS  Google Scholar 

  • Matsuoka S et al (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97:10389–10394

    PubMed  CAS  Google Scholar 

  • McCabe N et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115. doi:66/16/8109 [pii]10.1158/0008-5472.CAN-06-0140

    PubMed  CAS  Google Scholar 

  • McNeely S et al (2010) Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell Cycle 9:995–1004. doi:10935 [pii]

    PubMed  CAS  Google Scholar 

  • Mihaylova VT et al (2003) Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23:3265–3273

    PubMed  CAS  Google Scholar 

  • Mitchell JB et al (2010) In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin Cancer Res 16:2076–2084. doi:1078-0432.CCR-09-3277 [pii]10.1158/1078-0432.CCR-09-3277

    PubMed  CAS  Google Scholar 

  • Moreno-Herrero F et al (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437:440–443. doi:nature03927 [pii]10.1038/nature03927

    PubMed  CAS  Google Scholar 

  • Morgan MA et al (2010) Mechanism of Radiosensitization by the Chk1/2 Inhibitor AZD7762 Involves Abrogation of the G2 Checkpoint and Inhibition of Homologous Recombinational DNA Repair. Cancer Res doi:0008-5472.CAN-09-3573 [pii]10.1158/0008-5472.CAN-09-3573

    Google Scholar 

  • Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228. doi:10.1038/nrm2858nrm2858 [pii]

    PubMed  CAS  Google Scholar 

  • Okuno Y, Nakamura-Ishizu A, Otsu K, Suda T, Kubota Y (2012) Pathological neoangiogenesis depends on oxidative stress regulation by ATM. Nat Med doi:10.1038/nm.2846

    Google Scholar 

  • Olcina M, Lecane PS, Hammond EM (2010) Targeting hypoxic cells through the DNA damage response. Clin Cancer Res 16:5624–5629. doi:10.1158/1078-0432.CCR-10-0286

    PubMed  CAS  Google Scholar 

  • Peasland A et al (2011) Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 105:372–381. doi:10.1038/bjc.2011.243

    PubMed  CAS  Google Scholar 

  • Pires IM et al (2010a) Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res 70:925–935. doi:10.1158/0008-5472.CAN-09-2715

    CAS  Google Scholar 

  • Pires IM, Bencokova Z, McGurk C, Hammond EM (2010b) Exposure to acute hypoxia induces a transient DNA damage response which includes Chk1 and TLK1. Cell Cycle 9:2502–2507. doi:10.4161/cc.9.13.12059

    CAS  Google Scholar 

  • Pires IM et al (2012) Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br J Cancer 107:291–299. doi:10.1038/bjc.2012.265

    PubMed  CAS  Google Scholar 

  • Prevo R et al (2012) The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther 13(11):1072–1081

    PubMed  CAS  Google Scholar 

  • Probst H, Schiffer H, Gekeler V, Scheffler K (1989) Oxygen dependent regulation of mammalian ribonucleotide reductase in vivo and possible significance for replicon initiation. Biochem Biophys Res Commun 163:334–340

    PubMed  CAS  Google Scholar 

  • Ramaekers CHMA et al (2011) Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T. Radiother Oncol 101:190–197. doi:DOI 10.1016/j.radonc.2011.05.059

    PubMed  CAS  Google Scholar 

  • Rankin EB, Giaccia AJ, Hammond EM (2009) Bringing H2AX into the angiogenesis family. Cancer Cell 15:459–461. doi:10.1016/j.ccr.2009.05.004

    PubMed  CAS  Google Scholar 

  • Reaper PM et al (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7:428–430. doi:10.1038/nchembio.573

    PubMed  CAS  Google Scholar 

  • Reichard P, Ehrenberg A (1983) Ribonucleotide reductase–a radical enzyme. Science 221:514–519

    PubMed  CAS  Google Scholar 

  • Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757

    PubMed  CAS  Google Scholar 

  • Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 83:5978–5982

    PubMed  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412. doi:nrm2395 [pii]10.1038/nrm2395

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    PubMed  CAS  Google Scholar 

  • Rzymski T et al (2010) Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29:4424–4435. doi:10.1038/onc.2010.191

    PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    PubMed  CAS  Google Scholar 

  • Sanchez Y et al (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501

    PubMed  CAS  Google Scholar 

  • Schoppy DW et al (2012) Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 122:241–252. doi:58928 [pii]10.1172/JCI58928

    PubMed  CAS  Google Scholar 

  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966

    PubMed  CAS  Google Scholar 

  • Stiff T et al (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. Embo J 25:5775–5782

    PubMed  CAS  Google Scholar 

  • Stucki M et al (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226, doi:S0092-8674(05)01165-7 [pii]10.1016/j.cell.2005.09.038

    PubMed  CAS  Google Scholar 

  • Toledo LI et al (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18:721–727. doi:10.1038/nsmb.2076

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283. doi:nrm2147 [pii]10.1038/nrm2147

    PubMed  CAS  Google Scholar 

  • Wang Y et al (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  • Watters D et al (1997) Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 14:1911–1921

    PubMed  CAS  Google Scholar 

  • Yang J et al (2009) Small-molecule activation of p53 blocks hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in vivo and leads to tumor cell apoptosis in normoxia and hypoxia. Mol Cell Biol 29:2243–2253. doi:MCB.00959-08 [pii]10.1128/MCB.00959-08

    PubMed  CAS  Google Scholar 

  • Ye C et al (2007) Expression patterns of the ATM gene in mammary tissues and their associations with breast cancer survival. Cancer 109:1729–1735. doi:10.1002/cncr.22592

    PubMed  Google Scholar 

  • Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26:1317–1322. doi:bgi122 [pii]10.1093/carcin/bgi122

    PubMed  CAS  Google Scholar 

  • Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A 85:9533–9537

    PubMed  CAS  Google Scholar 

  • Yu G et al (2004) Expression of ATM protein and its relationship with p53 in pancreatic carcinoma with tissue array. Pancreas 28:421–426. doi:00006676-200405000-00011 [pii]

    PubMed  CAS  Google Scholar 

  • Yuan J, Narayanan L, Rockwell S, Glazer PM (2000) Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372–4376

    PubMed  CAS  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester M. Hammond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olcina, M., Hammond, E. (2014). Hypoxia and the DNA Damage Response. In: Melillo, G. (eds) Hypoxia and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9167-5_2

Download citation

Publish with us

Policies and ethics