Skip to main content

Prodrug Strategies for Targeting Tumour Hypoxia

  • Chapter
  • First Online:
Hypoxia and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1962 Accesses

Abstract

Tumour hypoxia is a critically important, but elusive, target in cancer therapy; the importance of eliminating hypoxic cells is underscored by their central roles in tumour progression and resistance to cytotoxic chemotherapy and radiotherapy. While many molecular targets may offer synthetic lethal interactions with hypoxia, the development of prodrugs that are activated to generate cytotoxins by one-electron (1e) reduction in hypoxic cells represents a more direct approach. Although conceptually simple, significant challenges need to be overcome to achieve useful therapeutic activity. These include designing prodrugs able to diffuse efficiently into hypoxic tissue, avoidance of off-target (oxygen-insensitive) two-electron (2e) reduction, maximizing bystander effects from diffusion of the active metabolites to exploit severely hypoxic regions in tumours and (critically) the development of predictive biomarkers for what is in fact a multifaceted target (comprising hypoxia, activating reductases and the molecular determinants of sensitivity to the active metabolites). Here we provide an overview of recent progress towards these goals in the context of four classes of hypoxia-activated prodrugs (HAPs) in clinical trial or in advanced preclinical development, namely benzotriazine di-oxides (tirapazamine and SN30000), the dinitrobenzamide mustard (DNBM) PR-104, the phosphoramidate mustard TH-302 and nitrochloromethylbenzindoline (nitroCBI) prodrugs of potent DNA minor groove alkylators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Alfa GK, Chan SL, Lin CC et al (2011) PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol 68:539–545

    PubMed  CAS  Google Scholar 

  • Adams PC, Rickert DE (1995) Metabolism of [C-14]1,3-dinitrobenzene by rat small intestinal mucosa in vitro. Drug Metab Dispos 23:982–987

    PubMed  CAS  Google Scholar 

  • Aghajanian C, Brown C, O’flaherty C et al (1997) Phase I study of tirapazamine and cisplatin in patients with recurrent cervical cancer. Gynecol Oncol 67:127–130

    PubMed  CAS  Google Scholar 

  • Ahlskog JK et al (2009) Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br J Cancer 101:645–657 (2009)

    PubMed  CAS  Google Scholar 

  • Ahn GO, Brown M (2007) Targeting tumors with hypoxia-activated cytotoxins. Front Biosci 12:3483–3501

    PubMed  CAS  Google Scholar 

  • Anderson RF, Shinde SS, Hay MP et al (2003) Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor agents to oxidizing species following their one-electron reduction. J Am Chem Soc 125:748–756

    PubMed  CAS  Google Scholar 

  • Anderson RF, Shinde SS, Hay MP et al (2006) Potentiation of the cytotoxicity of the anticancer agent tirapazamine by benzotriazine N-oxides: the role of redox equilibria. J Am Chem Soc 128:245–249

    PubMed  CAS  Google Scholar 

  • Anlezark GM, Melton RG, Sherwood RF et al (1995) Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase. Biochem Pharmacol 50:609–618

    PubMed  CAS  Google Scholar 

  • Arteel GE, Thurman RG, Yates JM et al (1995) Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br J Cancer 72:889–895

    PubMed  CAS  Google Scholar 

  • Ashoorzadeh A, Atwell GJ, Pruijn FB et al (2011) The effect of sulfonate leaving groups on the hypoxia-selective toxicity of nitro analogs of the duocarmycins. Bioorg Med Chem 19:4851–4860

    PubMed  CAS  Google Scholar 

  • Ask K, Dijols S, Giroud C et al (2003) Reduction of nilutamide by NO synthases: implications for the adverse effects of this nitroaromatic antiandrogen drug. Chem Res Toxicol 16:1547–1554

    PubMed  CAS  Google Scholar 

  • Atwell GJ, Tercel M, Boyd M et al (1998) Synthesis and cytotoxicity of 5-amino-1-(chloromethyl)-3-[(5,6,7-trimethoxyindol-2-yl)carbonyl]-1,2-dihydro-3H-benz[e]indole (amino-seco-CBI-TMI) and related 5-alkylamino analogues: New DNA minor groove alkylating agents. J Org Chem 63:9414–9420

    CAS  Google Scholar 

  • Atwell GJ, Milbank JJ, Wilson WR et al (1999) 5-Amino-1-(chloromethyl)-1,2-dihydro-3H-benz[e]indoles: relationships between structure and cytotoxicity for analogues bearing different DNA minor groove binding subunits. J Med Chem 42:3400–3411

    PubMed  CAS  Google Scholar 

  • Atwell GJ, Yang S, Pruijn FB et al (2007) Synthesis and Structure-Activity Relationships for 2,4-Dinitrobenzamide-5 mustards as Prodrugs for the Escherichia coli nfsB Nitroreductase in Gene Therapy. J Med Chem 50:1197–1212

    PubMed  CAS  Google Scholar 

  • Azab AK, Hu J, Quang P et al (2012) Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119:5782–5794

    PubMed  CAS  Google Scholar 

  • Bagshawe KD (1995) Antibody-directed enzyme prodrug therapy: a review. Drug Dev Res 34:220–230

    CAS  Google Scholar 

  • Arana Yi GYA, Borthakur G, Thall PF et al (2013) Final report of phase I/II study of PR104, a hypoxia-activated pro-drug, in relapsed/refractory acute leukemia. Abstract #115667: 2013 ASCO Annual Meeting

    Google Scholar 

  • Baker MA, Zeman EM, Hirst VK et al (1988) Metabolism of SR 4233 by Chinese hamster ovary cells: basis of selective hypoxic cytotoxicity. Cancer Res 48:5947–5952

    PubMed  CAS  Google Scholar 

  • Baumann RP, Ishiguro K, Penketh PG et al (2011) KS900: a hypoxia-directed, reductively activated methylating antitumor prodrug that selectively ablates O(6)-alkylguanine-DNA alkyltransferase in neoplastic cells. Biochem Pharmacol 81:1201–1210

    PubMed  CAS  Google Scholar 

  • Belcourt MF, Hodnick WF, Rockwell S et al (1996) Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase. Proc Natl Acad Sci U S A 93:456–460

    PubMed  CAS  Google Scholar 

  • Benito J, Shi Y, Szymanska B et al (2011) Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS ONE 6:e23108

    PubMed  CAS  Google Scholar 

  • Birtwistle J, Hayden RE, Khanim FL et al (2009) The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: Implications for leukemogenesis. Mutat Res 662:67–74

    PubMed  CAS  Google Scholar 

  • Blouw B, Song H, Tihan T et al (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4:133–146

    PubMed  CAS  Google Scholar 

  • Boger DL, Johnson DS (1996) CC-1065 and the duocarmycins: Understanding their biological function through mechanistic studies. Angew Chem Int Ed Engl 35:1438–1474

    CAS  Google Scholar 

  • Boger DL, Han NH, Tarby CM et al (1996) Synthesis, chemical properties, and preliminary evaluation of substituted CBI analogs of CC-1065 and the duocarmycins incorporating the 7-cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one alkylation subunit: Hammett quantitation of the magnitude of electronic effects on functional reactivity. J Org Chem 61:4894–4912

    Google Scholar 

  • Boger DL, Yun W (1994) CBI-TMI: synthesis and evaluation of a key analog of the duocarmycins. Validation of a direct relationship between chemical solvolytic stability and cytotoxic potency and confirmation of the structural features responsible for the distinguishing behavior of enantiomeric pairs of agents. J Am Chem Soc 116:7996–8006

    CAS  Google Scholar 

  • Boger DL, Ishizaki T, Zarrinmayeh H et al (1990) Duocarmycin-pyrindamycin DNA alkylation properties and identification, synthesis, and evaluation of agents incorporating the pharmacophore of the duocarmycin-pyrindamycin alkylation subunit. Identification of the CC-1065-duocarmycin common pharmacophore. J Am Chem Soc 112:8961–8971

    CAS  Google Scholar 

  • Boger DL, Johnson DS, Yun W (1994) ( + )- and ent-(–)-Duocarmycin SA and ( + )- and ent-(–)-N-BOC-DSA DNA alkylation properties. Alkylation site models that accommodate the offset AT-rich adenine N3 alkylation selectivity of the enantiomeric agents. J Am Chem Soc 116:1635–1656

    CAS  Google Scholar 

  • Borad M, Infante JR, Mita AC et al (2010) Complete phase 1B study of TH-302 in combination with gemcitabine, docetaxel or pemetrexed. The 35th ESMO Congress in Milan, Italy, 8–12 Oct

    Google Scholar 

  • Borad MJ, Reddy R, bahary N et al (2012) TH-302 plus gemcitabine vs gemcitabine in patients with untreated advanced pancreatic adenocarcinoma. European Society for Medical Oncology (ESMO) 2012 Congress, Vienna, Austria, 28th Sep–2nd Oct

    Google Scholar 

  • Borch RF, Liu J, Schmidt JP et al (2000) Synthesis and evaluation of nitroheterocyclic phosphoramidates as hypoxia-selective alkylating agents. J Med Chem 43:2258–2265

    PubMed  CAS  Google Scholar 

  • Borch RF, Liu J, Joswig C et al (2001) Antitumor activity and toxicity of novel nitroheterocyclic phosphoramidates. J Med Chem 44:74–77

    PubMed  CAS  Google Scholar 

  • Brown JM (1993) SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 67:1163–1170

    PubMed  CAS  Google Scholar 

  • Brown M (2010) Henry S. Kaplan distinguished scientist award lecture 2007. The remarkable yin and yang of tumour hypoxia. Int J Radiat Biol 86:907–917

    PubMed  CAS  Google Scholar 

  • Brown JM, Lemmon MJ (1990) Potentiation by the hypoxic cytotoxin SR 4233 of cell killing produced by fractionated irradiation of mouse tumors. Cancer Res 50:7745–7749

    PubMed  CAS  Google Scholar 

  • Brown JM, Lemmon MJ (1991) Tumor hypoxia can be exploited to preferentially sensitize tumors to fractionated irradiation. Int J Radiat Oncol Biol Phys 20:457–461

    PubMed  CAS  Google Scholar 

  • Brown JM, Diehn M, Loo BW (2010) Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys 78:323–327

    PubMed  Google Scholar 

  • Buffa FM, Harris AL, West CM et al (2010) Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102:428–435

    PubMed  CAS  Google Scholar 

  • Carlson DJ, Keall PJ, Loo BW Jr et al (2011) Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Int J Radiat Oncol Biol Phys 79:1188–1195

    PubMed  Google Scholar 

  • Cazares-Korner C, Pires IM, Swallow ID et al (2013) CH-01 is a hypoxia-activated prodrug that sensitizes cells to hypoxia/reoxygenation through inhibition of Chk1 and Aurora A. ACS Chem Biol 8:1451–1459

    Google Scholar 

  • Cenas N, Prast S, Nivinskas H et al (2006) Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. J Biol Chem 281:5593–5603

    PubMed  CAS  Google Scholar 

  • Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26:333–339

    PubMed  CAS  Google Scholar 

  • Chandor A, Dijols S, Ramassamy B et al (2008) Metabolic activation of the antitumor drug 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by NO synthases. Chem Res Toxicol 21:836–843

    PubMed  CAS  Google Scholar 

  • Chang Q, Jurisica I, Do T et al (2011) Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res 71:3110–3120

    Google Scholar 

  • Chang YS, Adnane J, Trail PA et al (2007) Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 59:561–574

    PubMed  CAS  Google Scholar 

  • Chawla SP, Ganjoo KN, Adkins D et al (2011) A phase 2 study of TH-302 in combination with doxorubicin in advanced soft tissue sarcoma. Connective Tissue Oncology Society (CTOS) Annual Meeting, Chicago, USA 26–29 Oct

    Google Scholar 

  • Chen Y, Hu L (2009) Design of anticancer prodrugs for reductive activation. Med Res Rev 29:29–64

    PubMed  Google Scholar 

  • Chinje EC, Cowen RL, Feng J et al (2003) Non-nuclear localized human NOSII enhances the bioactivation and toxicity of tirapazamine (SR4233) in vitro. Mol Pharmacol 63:1248–1255

    PubMed  CAS  Google Scholar 

  • Chowdhury G, Junnotula V, Daniels JS et al (2007) DNA strand damage product analysis provides evidence that the tumor cell-specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O(2). J Am Chem Soc 129:12870–12877

    PubMed  CAS  Google Scholar 

  • Connors TA, Whisson ME (1966) Cure of mice bearing advanced plasma cell tumours with aniline mustard: the relationship between glucuronidase activity and tumour sensitivity. Nature 210:866–867

    PubMed  CAS  Google Scholar 

  • Covens A, Blessing J, Bender D et al (2006) A phase II evaluation of tirapazamine plus cisplatin in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol 100:586–590

    PubMed  CAS  Google Scholar 

  • Cowan DS, Hicks KO, Wilson WR (1996) Multicellular membranes as an in vitro model for extravascular diffusion in tumours. Br J Cancer Suppl 27:S28–S31

    Google Scholar 

  • Craighead PS, Pearcey R, Stuart G (2000) A phase I/II evaluation of tirapazamine administered intravenously concurrent with cisplatin and radiotherapy in women with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 48:791–795

    PubMed  CAS  Google Scholar 

  • Cristofanilli M, Bryan WJ, Miller LL et al (1998) Phase II study of adozelesin in untreated metastatic breast cancer. Anticancer Drugs 9:779–782

    PubMed  CAS  Google Scholar 

  • Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317–332

    PubMed  CAS  Google Scholar 

  • Daniels JS, Gates KS (1996) DNA cleavage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (SR4233): Evidence for involvement of hydroxyl radical. J Am Chem Soc 118:3380–3385

    CAS  Google Scholar 

  • Daniels JS, Gates KS, Tronche C et al (1998) Direct evidence for bimodal DNA damage induced by tirapazamine. Chem Res Toxicol 11:1254–1257

    PubMed  CAS  Google Scholar 

  • Delahoussaye YM, Hay MP, Pruijn FB et al (2003) Improved potency of the hypoxic cytotoxin tirapazamine by DNA-targeting. Biochem Pharmacol 65:1807–1815

    PubMed  CAS  Google Scholar 

  • Denny WA, Wilson WR (1986) Considerations for the design of nitrophenyl mustards as agents with selective toxicity for hypoxic tumor cells. J Med Chem 29:879–887

    PubMed  CAS  Google Scholar 

  • Denny WA, Wilson WR (1993) Bioreducible mustards: a paradigm for hypoxia-selective prodrugs of diffusible cytotoxins (HPDCs). Cancer Metastasis Rev 12:135–151

    PubMed  CAS  Google Scholar 

  • Denny WA, Wilson WR (1998) The design of selectively-activated anti-cancer prodrugs for use in antibody-directed and gene-directed enzyme-prodrug therapies. J Pharm Pharmacol 50:387–394

    PubMed  CAS  Google Scholar 

  • Denny WA, Wilson WR, Hay MP (1996) Recent developments in the design of bioreductive drugs. Br J Cancer 74(Suppl XXVII):S32–S38

    CAS  Google Scholar 

  • Dewhirst MW (2009) Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res 172:653–665

    PubMed  CAS  Google Scholar 

  • Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437

    PubMed  CAS  Google Scholar 

  • DiSilvestro P, Ali S, Peter C et al (2012) A Gynecologic Oncology Group phase III randomized trial of weekly cisplatin and radiation versus cisplatin and tirapazamine and radiation in stage IB2, IIA, IIIB and IVA cervical carcinoma limited to the pelvis. Gynecol Oncol 125(Suppl 1):S3–S4

    Google Scholar 

  • Dorie MJ, Brown JM (1993) Tumor-specific, schedule-dependent interaction between tirapazamine (SR 4233) and cisplatin. Cancer Res 53:4633–4636

    PubMed  CAS  Google Scholar 

  • Dorie MJ, Brown JM (1994) Potentiation of the anticancer effect of cisplatin by the hypoxic cytotoxin tirapazamine. In: Vaupel PW, Kelleher DK, Gunderoth M (eds) Tumor oxygenation, Fischer-Verlag, Stuttgart, pp 125–135

    Google Scholar 

  • Down J, Parmar K, D’Andrea AD et al (2010) Aldo-Keto Reductase 1C3 as a novel target for the aerobic activation of the prodrug PR-104A in human hematopoietic cells. Proceedings of 56th Annual Meeting Radiation Research Society, September 25–29, 2010, Maui, Hawaii, abstract number PS7 95

    Google Scholar 

  • Duan JX, Jiao H, Kaizerman J et al (2008) Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J Med Chem 51:2412–2420

    PubMed  CAS  Google Scholar 

  • Dubois L, Peeters S, Lieuwes NG et al (2011) Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation 9. Radiother Oncol 99:424–431

    PubMed  CAS  Google Scholar 

  • Durand RE, Olive PL (1992) Evaluation of bioreductive drugs in multicell spheroids. Int J Radiat Oncol Biol Phys 22:689–692

    PubMed  CAS  Google Scholar 

  • Durand RE, Olive PL (1997) Physiologic and cytotoxic effects of tirapazamine in tumor-bearing mice. Radiat Oncol Investig 5:213–219

    PubMed  CAS  Google Scholar 

  • Ebbesen P, Pettersen EO, Gorr TA et al (2009) Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. (Review) (375 refs). Journal of Enzyme Inhibition Medicinal Chemistry 24(Suppl 1):1–39

    PubMed  CAS  Google Scholar 

  • Evans JW, Yudoh K, Delahoussaye YM et al (1998) Tirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes. Cancer Res 58:2098–2101

    PubMed  CAS  Google Scholar 

  • Evans SM, Hahn S, Pook DR et al (2000) Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60:2018–2024

    PubMed  CAS  Google Scholar 

  • Evans JW, Chernikova SB, Kachnic LA et al (2008) Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. Cancer Res 68:257–265

    PubMed  CAS  Google Scholar 

  • Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumour microenvironment in metastatic disease. Cancer Met Rev 29:285–293

    CAS  Google Scholar 

  • Fitzsimmons SA, Lewis AD, Riley RJ et al (1994) Reduction of 3-amino-1,2,4-benzotriazine-1,4-di-N-oxide (tirapazamine, WIN 59075, SR 4233) to a DNA-damaging species: a direct role for NADPH:cytochrome P450 oxidoreductase. Carcinogenesis 15:1503–1510

    PubMed  CAS  Google Scholar 

  • Foehrenbacher A, Patel K, Abbattista M et al. (2013) The role of bystander effects in the antitumor activity of the hypoxia-activated prodrug PR-104. Front Oncol 3:263

    Google Scholar 

  • Fox ME, Lemmon MJ, Mauchline ML et al (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther 3:173–178

    PubMed  CAS  Google Scholar 

  • Frolova O, Samudio I, Benito JM et al (2012) Regulation of HIF-1alpha signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biol Ther 13:858–870

    PubMed  CAS  Google Scholar 

  • Ganjoo KN, Cranmer LD, Butrynski JE et al (2011) A phase I study of the safety and pharmacokinetics of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. Oncology 80:50–56

    PubMed  CAS  Google Scholar 

  • Ghatage P, Sabagh H (2012) Is there a role for tirapazamine in the treatment of cervical cancer? Expert Opin Drug Metab Toxicol 8:1589–1597

    PubMed  CAS  Google Scholar 

  • Gieseg MA, Matejovic J, Denny WA (1999) Comparison of the patterns of DNA alkylation by phenol and amino seco- CBI-TMI compounds: use of a PCR method for the facile preparation of single end-labelled double-stranded DNA. Anticancer Drug Des 14:77–84

    PubMed  CAS  Google Scholar 

  • Graaf MM, Boven E, Scheeren HW et al (2002) Beta-glucuronidase-mediated drug release. Curr Pharm Des 8:1391–1403

    PubMed  Google Scholar 

  • Graham MA, Senan S, Robin H Jr et al (1997) Pharmacokinetics of the hypoxic cell cytotoxic agent tirapazamine and its major bioreductive metabolites in mice and humans: retrospective analysis of a pharmacokinetically guided dose-escalation strategy in a phase I trial. Cancer Chemother Pharmacol 40:1–10

    PubMed  CAS  Google Scholar 

  • Grove JI, Searle PF, Weedon SJ et al (1999) Virus-directed enzyme prodrug therapy using CB1954. Anticancer Drug Des 14:461–472

    PubMed  CAS  Google Scholar 

  • Gu Y, Patterson AV, Atwell GJ et al (2009) Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol Cancer Ther 8:1714–1723

    PubMed  CAS  Google Scholar 

  • Gu Y, Atwell GJ, Wilson WR (2010) Metabolism and excretion of the novel bioreductive prodrug PR-104 in mice, rats, dogs and humans. Drug Metab Dispos 38:498–508

    PubMed  CAS  Google Scholar 

  • Gu Y, Guise CP, Patel K et al (2011a) Reductive metabolism of the dinitrobenzamide mustard anticancer prodrug PR-104 in mice. Cancer Chemother Pharmacol 67:543–555

    CAS  Google Scholar 

  • Gu Y, Tingle MD, Wilson WR (2011b) Glucuronidation of anticancer prodrug PR-104A: Species differences, identification of human UDP-glucuronosyltransferases and implications for therapy. J Pharmacol Exp Ther 337:692–702

    CAS  Google Scholar 

  • Guise CP, Wang A, Thiel A et al (2007) Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: a role for NADPH:cytochrome P450 oxidoreductase under hypoxia. Biochem Pharmacol 74:810–820

    PubMed  CAS  Google Scholar 

  • Guise CP, Abbattista M, Singleton RS et al (2010) The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res 70:1573–1584

    PubMed  CAS  Google Scholar 

  • Guise CP, Abbattista MR, Tipparaju SR et al (2012) Diflavin oxidoreductases activate the bioreductive prodrug PR-104A under hypoxia. Mol Pharmacol 81:31–40

    PubMed  CAS  Google Scholar 

  • Hall EJ, Roizin-Towle L (1975) Hypoxic sensitizers: radiobiological studies at the cellular level. Radiology 117:453–457

    PubMed  CAS  Google Scholar 

  • Harrington KJ (2011) Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer 105:628–639

    PubMed  CAS  Google Scholar 

  • Hay MP, Gamage SA, Kovacs MS et al (2003) Structure-activity relationships of 1,2,4-benzotriazine 1,4-dioxides as hypoxia-selective analogues of tirapazamine. J Med Chem 46:169–182

    PubMed  CAS  Google Scholar 

  • Hay MP, Hicks KO, Pruijn FB et al (2007a) Pharmacokinetic/pharmacodynamic model-guided identification of hypoxia-selective 1,2,4-benzotriazine 1,4-dioxides with antitumor activity: the role of extravascular transport. J Med Chem 50:6392–6404

    CAS  Google Scholar 

  • Hay MP, Pchalek K, Pruijn FB et al (2007b) Hypoxia-selective 3-alkyl 1,2,4-benzotriazine 1,4-dioxides: the influence of hydrogen bond donors on extravascular transport and antitumor activity. J Med Chem 50:6654–6664

    CAS  Google Scholar 

  • Hay MP, Hicks KO, Pchalek K et al (2008) Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective cytotoxins. J Med Chem 51:6853–6865

    PubMed  CAS  Google Scholar 

  • Helsby NA, Wheeler SJ, Pruijn FB et al (2003) Effect of nitroreduction on the alkylating reactivity and cytotoxicity of the 2,4-dinitrobenzamide-5-aziridine CB 1954 and the corresponding nitrogen mustard SN23862: distinct mechanisms of bioreductive activation. Chem Res Toxicol 16:469–478

    PubMed  CAS  Google Scholar 

  • Helsby NA, Ferry DM, Patterson AV et al (2004) 2-amino metabolites are key mediators of CB 1954 and SN23862 bystander effects in nitroreductase GDEPT. Br J Cancer 90:1084–1093

    PubMed  CAS  Google Scholar 

  • Hicks KO (2008) Three-dimensional tissue cultures. In: Schwab M (ed) Encyclopedia of Cancer, Springer-Verlag, Berlin, pp 2956–2961

    Google Scholar 

  • Hicks KO (2012) Introducing drug transport early in the design of hypoxia selective anticancer agents using a mathematical modelling approach. In: D’Onofrio A, Cerrai P, Gandolfi A (eds) New challenges for cancer systems biomedicine. Springer, Italy, pp 337–354

    Google Scholar 

  • Hicks KO, Fleming Y, Siim BG et al (1998) Extravascular diffusion of tirapazamine: effect of metabolic consumption assessed using the multicellular layer model. Int J Radiat Oncol Biol Phys 42:641–649

    PubMed  CAS  Google Scholar 

  • Hicks KO, Pruijn FB, Sturman JR et al (2003) Multicellular resistance to tirapazamine is due to restricted extravascular transport: a pharmacokinetic/pharmacodynamic study in HT29 multicellular layer cultures. Cancer Res 63:5970–5977

    PubMed  CAS  Google Scholar 

  • Hicks KO, Siim BG, Pruijn FB et al (2004) Oxygen dependence of the metabolic activation and cytotoxicity of tirapazamine: implications for extravascular transport and activity in tumors. Radiat Res 161:656–666

    PubMed  CAS  Google Scholar 

  • Hicks KO, Pruijn FB, Secomb TW et al (2006) Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J Natl Cancer Inst 98:1118–1128

    PubMed  CAS  Google Scholar 

  • Hicks KO, Myint H, Patterson AV et al (2007) Oxygen dependence and extravascular transport of hypoxia-activated prodrugs: comparison of the dinitrobenzamide mustard PR-104A and tirapazamine. Int J Radiat Oncol Biol Phys 69:560–571

    PubMed  CAS  Google Scholar 

  • Hicks KO, Siim BG, Jaiswal JK et al (2010) Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin Cancer Res 16:4946–4957

    PubMed  CAS  Google Scholar 

  • Hill RP, Marie-Egyptienne DT, Hedley DW (2009) Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 19:106–111

    PubMed  Google Scholar 

  • Hoeben BA, Kaanders JH, Franssen GM et al (2010) PET of Hypoxia with 89Zr-Labeled cG250-F(ab’)2 in Head and Neck Tumors. J. Nucl. Med 51:1076–1083

    Google Scholar 

  • Horsman MR, Mortensen LS, Petersen JB (2012) Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9: 674–687

    Google Scholar 

  • Houghton PJ, Lock R, Carol H et al (2011) Initial testing of the hypoxia activated prodrug PR-104 by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 57:443–453

    PubMed  Google Scholar 

  • Hu J, Handisides DR, Van Valckenborgh E (2010) Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood 116:1524–1527

    Google Scholar 

  • Hunter FW, Wang J, Patel R et al (2012) Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: Comparison with other hypoxia-activated prodrugs. Biochem Pharmacol 83:574–585

    PubMed  CAS  Google Scholar 

  • Hu J, Van Valckenborgh E, Xu D et al (2013) Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxia-activated prodrug TH-302, in vivo and in vitro. Mol Cancer Ther 12: 1763–1773

    Google Scholar 

  • Hwang JT, Greenberg MM, Fuchs T et al (1999) Reaction of the hypoxia-selective antitumor agent tirapazamine with a C1′-radical in single-stranded and double-stranded DNA. Biochemistry (Mosc) 38:14248–14255

    CAS  Google Scholar 

  • Jameson MB, Rischin D, Pegram M et al (2010) A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65:791–801

    PubMed  CAS  Google Scholar 

  • Jensen PO, Mortensen BT, Hodgkiss RJ et al (2000) Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif 33:381–395

    PubMed  CAS  Google Scholar 

  • Johnson CA, Kilpatrick D, von Roemeling R et al (1997) Phase I trial of tirapazamine in combination with cisplatin in a single dose every 3 weeks in patients with solid tumors. J Clin Oncol 15:773–780

    PubMed  CAS  Google Scholar 

  • Jones GD, Weinfeld M (1996) Dual action of tirapazamine in the induction of DNA strand breaks. Cancer Res 56:1584–1590

    PubMed  CAS  Google Scholar 

  • Jubb AM, Buffa FM, Harris AL (2010) Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. J Cell Mol Med 14:18–29

    PubMed  CAS  Google Scholar 

  • Jung D, Jiao H, Duan JX et al (2012a) Metabolism and excretion of TH-302 in dogs. Xenobiotica 42:687–700

    CAS  Google Scholar 

  • Jung D, Jiao H, Duan JX et al (2012b) Metabolism, pharmacokinetics and excretion of a novel hypoxia activated cytotoxic prodrug, TH-302, in rats. Xenobiotica 42:372–388

    CAS  Google Scholar 

  • Jung D, Lin L, Jiao H et al (2012c) Pharmacokinetics of TH-302: a hypoxically activated prodrug of bromo-isophosphoramide mustard in mice, rats, dogs and monkeys. Cancer Chemother Pharmacol 69:643–654

    CAS  Google Scholar 

  • Keith B, Johnson RS, Simon MC (2012) HIF1apha and HIF2alpha: sibling rivalry in hypoxic tumor growth and progression. Nature Rev Cancer 12:9–22

    CAS  Google Scholar 

  • Kelson AB, McNamara JP, Pandey A et al (1998) 1,2,4-Benzotriazine 1,4-dioxides. An important class of hypoxic cytotoxins with antitumor activity. Anticancer Drug Des 13:575–592

    PubMed  CAS  Google Scholar 

  • Kim IH, Brown JM (1994) Reoxygenation and rehypoxiation in the SCCVII mouse tumor. Int J Radiat Oncol Biol Phys 29:493–497

    PubMed  CAS  Google Scholar 

  • Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    PubMed  CAS  Google Scholar 

  • Knox RJ, Chen S (2004) Quinone reductase-mediated nitro-reduction: clinical applications. Methods Enzymol 382:194–221

    PubMed  CAS  Google Scholar 

  • Knox RJ, Friedlos F, Marchbank T et al (1991) Bioactivation of CB 1954: reaction of the active 4-hydroxylamino derivative with thioesters to form the ultimate DNA-DNA interstrand crosslinking species. Biochem Pharmacol 42:1691–1697

    PubMed  CAS  Google Scholar 

  • Kobayashi E, Okamoto A, Asada M et al (1994) Characteristics of antitumor activity of KW-2189, a novel water-soluble derivative of duocarmycin, against murine and human tumors. Cancer Res 54:2404–2410

    PubMed  CAS  Google Scholar 

  • Koch CJ (1993) Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res 53:3992–3997

    PubMed  CAS  Google Scholar 

  • Koch CJ, Stobbe CC, Bump EA (1984) The effect on the Km for radiosensitization at 0 degree C of thiol depletion by diethylmaleate pretreatment: quantitative differences found using the radiation sensitizing agent misonidazole or oxygen. Radiat Res 98:141–153

    PubMed  CAS  Google Scholar 

  • Kolesnick R, Haimovitz-Friedman A, Fuks Z (2012) Coupling of endothelial cell dysfunction to tumor stem cell demise. In: Abstracts pf the 58th annual meeting of the Radiation Research Society, Puerto Rico, 30 Sept–3 Oct 2012 (abstract #S102).

    Google Scholar 

  • Kovacs MS, Hocking DJ, Evans JW et al (1999) Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin. Br J Cancer 80:1245–1251

    PubMed  CAS  Google Scholar 

  • Kruser TJ, Wheeler DL, Armstrong EA et al (2010) Augmentation of radiation response by motesanib, a multikinase inhibitor that targets vascular endothelial growth factor receptors. Clin Cancer Res 16:3639–3647

    PubMed  CAS  Google Scholar 

  • Kyle AH, Minchinton AI (1999) Measurement of delivery and metabolism of tirapazamine to tumour tissue using the multilayered cell culture model. Cancer Chemother Pharmacol 43:213–220

    PubMed  CAS  Google Scholar 

  • Laderoute K, Wardman P, Rauth AM (1988) Molecular mechanisms for the hypoxia-dependent activation of 3-amino- 1,2,4-benzotriazine-1,4-dioxide (SR 4233). Biochem Pharmacol 37:1487–1495

    PubMed  CAS  Google Scholar 

  • Le QT, Courter D (2008) Clinical biomarkers for hypoxia targeting. Cancer Metastasis Rev 27:351–362

    PubMed  CAS  Google Scholar 

  • Le QT, Fisher R, Oliner KS et al (2012) Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin Cancer Res 18:1798–1807

    PubMed  CAS  Google Scholar 

  • Lee AE, Wilson WR (2000) Hypoxia-dependent retinal toxicity of bioreductive anticancer prodrugs in mice. Toxicol Appl Pharmacol 163:50–59

    PubMed  CAS  Google Scholar 

  • Li LH, DeKoning TF, Kelly RC et al (1992) Cytotoxicity and antitumor activity of carzelesin, a prodrug cyclopropylpyrroloindole analogue. Cancer Res 52:4904–4913

    PubMed  CAS  Google Scholar 

  • Li S, Zhang J, Li J et al (2010) Inhibition of both thioredoxin reductase and glutathione reductase may contribute to the anticancer mechanism of TH-302. Biol Trace Elem Res 136:294–301

    PubMed  CAS  Google Scholar 

  • Lin AJ, Cosby LA, Shanky CW et al (1972) Potential bioreductive alkylating agents. I. Benzoquinone derivatives. J Med Chem 15:1247–1252

    PubMed  CAS  Google Scholar 

  • Liu SC, Ahn GO, Kioi M et al (2008) Optimised Clostridium-directed enzyme prodrug therapy improves the antitumor activity of the novel DNA crosslinking agent PR-104. Cancer Res 68:7995–8003

    PubMed  CAS  Google Scholar 

  • Liu Q, Sun JD, Wang J et al (2012) TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother Pharmacol 69:1487–1498

    PubMed  CAS  Google Scholar 

  • Lohse I, Rasowski J, Cao PJ et al (2012) Targeting tumor hypoxia in patient-derived pancreatic xenografts using TH-302. AACR Pancreatic Cancer Meeting, Lake Taho, June 18–20

    Google Scholar 

  • Maluf FC, Leiser AL, Aghajanian C et al (2006) Phase II study of tirapazamine plus cisplatin in patients with advanced or recurrent cervical cancer. Int J Gyne Cancer 16:1165–1171

    CAS  Google Scholar 

  • Markovic SN, Suman VJ, Vukov AM et al (2002) Phase II trial of KW2189 in patients with advanced malignant melanoma. Am J Clin Oncol 25:308–312

    PubMed  Google Scholar 

  • Martin SK, Diamond P, Gronthos S et al (2011) The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 25:1533–1542

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Imataki O, Torii E et al (2012) Elevated HIF-1alpha expression of acute myelogenous leukemia stem cells in the endosteal hypoxic zone may be a cause of minimal residual disease in bone marrow after chemotherapy. Leuk Res 36:e122-e124

    PubMed  CAS  Google Scholar 

  • Mazumdar J, Hickey MM, Pant DK et al (2010) HIF-2alpha deletion promotes Kras-driven lung tumor development. Proc Natl Acad Sci U S A 107:14182–14187

    PubMed  CAS  Google Scholar 

  • McDonald PC, Winum JY, Supuran CT et al (2012) Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3:84–97

    PubMed  Google Scholar 

  • McKeage MJ, Gu Y, Wilson WR et al (2011) A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. BMC Cancer 11:432

    PubMed  CAS  Google Scholar 

  • McKeage MJ, Jameson MB, Ramanathan RK et al (2012) PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours. BMC Cancer 12:496

    PubMed  CAS  Google Scholar 

  • McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427–442

    CAS  Google Scholar 

  • Mees G, Dierckx R, Vangestel C, Van de Wiele C et al (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imag 36:1674–1686

    Google Scholar 

  • Mehta S, Hughes NP, Buffa FM et al (2011) Assessing early therapeutic response to bevacizumab in primary breast cancer using magnetic resonance imaging and gene expression profiles. J Natl Cancer Inst Monogr 2011(43):71–74

    PubMed  Google Scholar 

  • Melillo G (2007) Targeting hypoxia cell signalling for cancer therapy. Cancer Metastasis Rev 26:341–352

    PubMed  CAS  Google Scholar 

  • Meng F, Evans JW, Bhupathi D et al (2012) Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol Cancer Ther 11:740–751

    PubMed  CAS  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    PubMed  CAS  Google Scholar 

  • Minchinton AI, Lemmon MJ, Tracy M et al (1992) Second-generation 1,2,4-benzotriazine 1,4-di-N-oxide bioreductive anti- tumor agents: pharmacology and activity in vitro and in vivo. Int J Radiat Oncol Biol Phys 22:701–705

    PubMed  CAS  Google Scholar 

  • Minchinton AI, Wendt KR, Clow KA et al (1997) Multilayers of cells growing on a permeable support. An in vitro tumour model. Acta Oncol 36:13–16

    PubMed  CAS  Google Scholar 

  • Mohindra JK, Rauth AM (1976) Increased cell killing by metronidazole and nitrofurazone of hypoxic compared to aerobic mammalian cells. Cancer Res 36:930–936

    PubMed  CAS  Google Scholar 

  • Morgan AS, Sanderson PE, Borch RF et al (1998) Tumor efficacy and bone marrow-sparing properties of TER286, a cytotoxin activated by glutathione S-transferase. Cancer Res 58:2568–2575

    PubMed  CAS  Google Scholar 

  • Nordgren IK, Tavassoli A (2011) Targeting tumour angiogenesis with small molecule inhibitors of hypoxia inducible factor. Chem Soc Rev 40:4307–4317

    PubMed  CAS  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24

    PubMed  Google Scholar 

  • Norlund P, Reichard P (2006) Ribonucleotide reductases. Ann Rev BioChemist 75:681–706

    Google Scholar 

  • Nuyts S, Van Mellaert L, Theys J et al (2002) Clostridium spores for tumour-specific drug delivery. Anticancer Drugs 13:115–125

    PubMed  CAS  Google Scholar 

  • Olcina M, Lecane PS, Hammond EM (2010) Targeting hypoxic cells through the DNA damage response. Clin Cancer Res 16:5620–5629

    Google Scholar 

  • Olive PL, Vikse CM, Banath JP (1996) Use of the comet assay to identify cells sensitive to tirapazamine in multicell spheroids and tumors in mice. Cancer Res 56:4460–4463

    PubMed  CAS  Google Scholar 

  • Olive PL, Banath JP, Sinnott LT (2004) Phosphorylated histone H2AX in spheroids, tumors, and tissues of mice exposed to etoposide and 3-amino-1,2,4-benzotriazine-1,3-dioxide. Cancer Res 64:5363–5369

    PubMed  CAS  Google Scholar 

  • Paez-Ribes M (2009) Antiangiogenic therapy elicits malignant progression of tumors to Increased local invasion and distant metastasis. Cancer Cell

    Google Scholar 

  • Palmer BD, Wilson WR, Denny WA (1990a) Nitro analogues of chlorambucil as potential hypoxia-selective anti- tumour drugs. Anticancer Drug Des 5:337–349

    CAS  Google Scholar 

  • Palmer BD, Wilson WR, Pullen SM et al (1990b) Hypoxia-selective antitumor agents. 3. Relationships between structure and cytotoxicity against cultured tumor cells for substituted N, N-bis(2- chloroethyl)anilines. J Med Chem 33:112–121

    CAS  Google Scholar 

  • Palmer BD, Wilson WR, Cliffe S et al (1992) Hypoxia-selective antitumor agents. 5. Synthesis of water-soluble nitroaniline mustards with selective cytotoxicity for hypoxic mammalian cells. J Med Chem 35:3214–3222

    PubMed  CAS  Google Scholar 

  • Palmer BD, Wilson WR, Atwell GJ et al (1994) Hypoxia-selective antitumor agents. 9. Structure-activity relationships for hypoxia-selective cytotoxicity among analogues of 5-[N, N-bis(2- chloroethyl)amino]-2,4-dinitrobenzamide. J Med Chem 37:2175–2184

    PubMed  CAS  Google Scholar 

  • Palmer BD, Zijl P van, Denny WA et al (1995) Reductive chemistry of the novel hypoxia-selective cytotoxin 5-[N, N- bis(2-chloroethyl)amino]-2,4-dinitrobenzamide. J Med Chem 38:1229–1241

    PubMed  CAS  Google Scholar 

  • Palmer BD, Wilson WR, Anderson RF et al (1996) Hypoxia-selective antitumor agents. 14. Synthesis and hypoxic cell cytotoxicity of regioisomers of the hypoxia-selective cytotoxin 5-[N, N- bis(2-chloroethyl)amino]-2,4-dinitrobenzamide. J Med Chem 39:2518–2528

    PubMed  CAS  Google Scholar 

  • Panthananickal A, Hansch C, Leo A (1979) Structure-activity relationship of aniline mustards acting against B-16 melanoma in mice. J Med Chem 22:1267–1269

    PubMed  CAS  Google Scholar 

  • Papadopoulou MV, Ji M, Rao MK et al (2003) Reductive activation of the nitroimidazole-based hypoxia-selective cytotoxin NLCQ-1 (NSC 709257). Oncology Res 14:21–29

    CAS  Google Scholar 

  • Papandreou I, Denko NC, Olson M et al (2011) Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117:1311–1314

    PubMed  CAS  Google Scholar 

  • Patel K, Lewiston D, Gu Y et al (2007) Analysis of the hypoxia-activated dinitrobenzamide mustard phosphate prodrug PR-104 and its alcohol metabolite PR-104A in plasma and tissues by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 856:302–311

    PubMed  CAS  Google Scholar 

  • Patel K, Choy SF, Hicks KO et al (2011) A combined pharmacokinetic model for the hypoxia-targeted prodrug PR-104A in humans, dogs, rats and mice predicts species differences in clearance and toxicity. Cancer Chemother Pharmacol 67:1145–1155

    PubMed  CAS  Google Scholar 

  • Patterson LH (2002) Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Metab Rev 34:581–592

    PubMed  CAS  Google Scholar 

  • Patterson AV, Saunders MP, Chinje EC et al (1997) Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069. Br J Cancer 76:1338–1347

    PubMed  CAS  Google Scholar 

  • Patterson AV, Saunders MP, Chinje EC et al (1998) Enzymology of tirapazamine metabolism: a review. Anticancer Drug Des 13:541–573

    PubMed  CAS  Google Scholar 

  • Patterson AV, Ferry DM, Edmunds SJ et al (2007) Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA crosslinking agent PR-104. Clin Cancer Res 13:3922–3932

    PubMed  CAS  Google Scholar 

  • Patterson AV, Jaiswal J, Syddall SP et al (2009) Cellular metabolism, murine pharmacokinetics and preclinical antitumor activity of SN29966, a novel hypoxia-activated irreversible pan-HER inhibitor. Mol Cancer Ther 8:Abstract B76-doi: 10.1158/1535–7163.

    Google Scholar 

  • Patterson AV, Smaill JB, Ackerley DF et al (2010) Bacterial nitroreductase enzymes and methods relating thereto. Provisional patent NZ586849

    Google Scholar 

  • Pavlidis N, Aamdal S, Awada A et al (2000) Carzelesin phase II study in advanced breast, ovarian, colorectal, gastric, head and neck cancer, non-Hodgkin’s lymphoma and malignant melanoma: a study of the EORTC early clinical studies group (ECSG). Cancer Chemother Pharmacol 46:167–171

    PubMed  CAS  Google Scholar 

  • Penketh PG, Shyam K, Baumann RP et al (2012) A strategy for selective O6-alkylguanine-DNA alkyltransferase depletion under hypoxic conditions. Chem Biol Drug Des 80:279–290

    PubMed  CAS  Google Scholar 

  • Peters KB, Brown JM (2002) Tirapazamine: a hypoxia-activated topoisomerase ii poison. Cancer Res 62:5248–5253

    PubMed  CAS  Google Scholar 

  • Peters L, Rischin D (2012) Elusive goal of targeting tumor hypoxia for therapeutic gain. J Clin Oncol 30:1741–1743

    PubMed  CAS  Google Scholar 

  • Peters LJ, O’Sullivan B, Giralt J et al (2010) Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: Results from TROG 02.02. J Clin Oncol 28:2996–3001

    PubMed  Google Scholar 

  • Phillips RM, Hendriks HR, Peters GJ (2013) EO9 (Apaziquone): from the clinic to the laboratory and back again. Br J Pharmacol 168:11–18

    Google Scholar 

  • Pires IM, Bencokova Z, Milani M et al (2010) Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res 70:925–935

    PubMed  CAS  Google Scholar 

  • Pitot HC, Reid JM, Sloan JA et al (2002) A Phase I study of bizelesin (NSC 615291) in patients with advanced solid tumors. Clin Cancer Res 8:712–717

    PubMed  CAS  Google Scholar 

  • Poon E, Harris AL, Ashcroft M (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26

    PubMed  Google Scholar 

  • Pruijn FB, Sturman JR, Liyanage HDS et al (2005) Extravascular transport of drugs in tumor tissue: effect of lipophilicity on diffusion of tirapazamine analogs in multicellular layer cultures. J Med Chem 48:1079–1087

    PubMed  CAS  Google Scholar 

  • Pruijn FB, Patel K, Hay MP et al (2008) Prediction of tumour tissue diffusion coefficients of hypoxia-activated prodrugs from physicochemical parameters. Aust J Chem 61:687–693

    CAS  Google Scholar 

  • Rapisarda A, Melillo G (2012) Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol 9:378–390

    PubMed  CAS  Google Scholar 

  • Rauth AM, Melo T, Misra V (1998) Bioreductive therapies: an overview of drugs and their mechanisms of action. Int J Radiat Oncol Biol Phys 42:755–762

    PubMed  CAS  Google Scholar 

  • Reddy SB, Williamson SK (2009) Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opinion InvestDrugs 18:77–87

    CAS  Google Scholar 

  • Rischin D, Peters L, Fisher R et al (2005) Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol 23:79–87

    PubMed  CAS  Google Scholar 

  • Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24:2098–2104

    PubMed  Google Scholar 

  • Rischin D, Narayan K, Oza AM et al (2010a) Phase 1 study of tirapazamine in combination with radiation and weekly cisplatin in patients with locally advanced cervical cancer. Int J Gynecol Cancer 20:827–833

    Google Scholar 

  • Rischin D, Peters LJ, O’Sullivan B et al (2010b) Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol 28:2989–2995

    CAS  Google Scholar 

  • Rockwell S, Dobrucki IT, Kim EY et al (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9:442–458

    PubMed  CAS  Google Scholar 

  • Rofstad EK, Mathiesen B, Henriksen K et al (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65:2387–2396

    PubMed  CAS  Google Scholar 

  • Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14:191–201

    PubMed  CAS  Google Scholar 

  • Romero-Ramirez L, Cao H, Nelson D et al (2005) XBP1 is essential for survival under hypoxic conditions and is required for tumour growth. Cancer Res 64:5943–5947

    Google Scholar 

  • Rosario LA, O’Brien ML, Henderson CJ et al (2000) Cellular response to a glutathione S-transferase P1–1 activated prodrug. Mol Pharmacol 58:167–174

    PubMed  CAS  Google Scholar 

  • Rouschop KM, van den Beuken T, Dubois L et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120:127–141

    Google Scholar 

  • Rouschop KM, Dubois LJ, Keulers TG et al (2013) PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc Natl Acad Sci U S A 110:4622–4627

    PubMed  CAS  Google Scholar 

  • Sandler AB, Nemunaitis J, Denham C et al (2000) Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small-cell lung cancer. (see comment). J Clin Oncol 18:122–130

    PubMed  CAS  Google Scholar 

  • Sartorelli AC (1988) Therapeutic attack of hypoxic cells of solid tumors: Presidential address. Cancer Res 48:775–778

    PubMed  CAS  Google Scholar 

  • Schwartz GH, Patnaik A, Hammond LA et al (2003) A phase I study of bizelesin, a highly potent and selective DNA-interactive agent, in patients with advanced solid malignancies. Ann Oncol 14:775–782

    PubMed  CAS  Google Scholar 

  • Secomb TW, Dewhirst MW, Pries AR (2012) Structural adaptation of normal and tumour vascular networks. Basic Clin Pharmacol Toxicol 110:63–69

    PubMed  CAS  Google Scholar 

  • Senan S, Rampling R, Graham MA et al (1997) Phase I and pharmacokinetic study of tirapazamine (SR 4233) administered every three weeks. Clin Cancer Res 3:31–38

    PubMed  CAS  Google Scholar 

  • Sennino B, McDonald DM (2012) Controlling escape from angiogenesis inhibitors. Nat Rev Cancer 12:699–709

    PubMed  CAS  Google Scholar 

  • Shepherd F, Koschel G, von Pawel J et al (2000) Comparison of Tirazone (tirapazamine) and cisplatin vs etoposide and cisplatin in advanced non-small cell lung cancer (NSCLC): final results of the international phase III CATAPULT II Trial. Lung Cancer 29(Suppl 1):28, abstract

    Google Scholar 

  • Shinde SS, Hay MP, Patterson AV et al (2009) Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase. J Am Chem Soc 131:14220–14221

    PubMed  CAS  Google Scholar 

  • Shinde SS, Maroz A, Hay MP et al (2010) Characterization of radicals formed following enzymatic reduction of 3-substituted analogues of the hypoxia-selective cytotoxin 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). J Am Chem Soc 132:2591–2599

    PubMed  CAS  Google Scholar 

  • Siim BG, Atwell GJ, Wilson WR (1994) Oxygen dependence of the cytotoxicity and metabolic activation of 4- alkylamino-5-nitroquinoline bioreductive drugs. Br J Cancer 70:596–603

    PubMed  CAS  Google Scholar 

  • Siim BG, van Zijl PL, Brown JM (1996) Tirapazamine-induced DNA damage measured using the comet assay correlates with cytotoxicity towards hypoxic tumour cells in vitro. Br J Cancer 73:952–960

    Google Scholar 

  • Siim BG, Denny WA, Wilson WR (1997) Nitro reduction as an electronic switch for bioreductive drug activation. Oncol Res 9:357–369

    PubMed  CAS  Google Scholar 

  • Siim BG, Laux WT, Rutland MD et al (2000) Scintigraphic imaging of the hypoxia marker (99m)technetium-labeled 2,2’-(1,4-diaminobutane)bis(2-methyl-3-butanone) dioxime (99mTc-labeled HL-91; prognox): noninvasive detection of tumor response to the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Res 60:4582–4588

    PubMed  CAS  Google Scholar 

  • Siim BG, Pruijn FB, Sturman JR et al (2004) Selective potentiation of the hypoxic cytotoxicity of tirapazamine by its 1-N-oxide metabolite SR 4317. Cancer Res 64:736–742

    PubMed  CAS  Google Scholar 

  • Singleton DC, Li D, Bai SY et al (2007) The nitroreductase prodrug SN28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411(NTR). Cancer Gene Ther 14:953–967

    Google Scholar 

  • Singleton RS, Guise CP, Ferry DM et al (2009) DNA crosslinks in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism and cytotoxicity. Cancer Res 69:3884–3891

    PubMed  CAS  Google Scholar 

  • Smaill JB, Jaiswal JK, Abbattista MR et al (2012) Mechanism of action of the hypoxia-activated irreversible pan-HER inhibitor SN29966. In: Chicago, IL, USA

    Google Scholar 

  • Spiegel JF, Spear MA, Brown JM (1993) Toxicology of daily administration to mice of the radiation potentiator SR 4233 (WIN 59075). Radiother Oncol 26:79–81

    PubMed  CAS  Google Scholar 

  • Stevenson RJ, Denny WA, Ashoorzadeh A et al (2011) The effect of a bromide leaving group on the properties of nitro analogs of the duocarmycins as hypoxia-activated prodrugs and phosphate pre-prodrugs for antitumor therapy. Bioorg Med Chem 19:5989–5998

    PubMed  CAS  Google Scholar 

  • Stevenson RJ, Denny WA, Tercel M et al (2012) Nitro seco analogues of the duocarmycins containing sulfonate leaving groups as hypoxia-activated prodrugs for cancer therapy. J Med Chem 55:2780–2802

    PubMed  CAS  Google Scholar 

  • Stratford IJ, Workman P (1998) Bioreductive drugs into the next millennium. Anticancer Drug Des 13:519–528

    PubMed  CAS  Google Scholar 

  • Su J, Guise CP, Smaill JB et al (2012) NADPH: cytochrome P450 oxidoreductase (POR)-specific zinc finger nucleases demonstrate a limited role for POR in hypoxic activation of bioreductive prodrugs. Tumor microenvironment and cellular stress: Signalling, metabolism, imaging and therapeutic targets, Crete, 3–6 Oct 2012

    Google Scholar 

  • Sun JD, Liu Q, Wang J et al (2012) Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res 18:758–770

    PubMed  CAS  Google Scholar 

  • Tatsumi K, Kitamura S, Narai N (1986) Reductive metabolism of aromatic nitro compounds including carcinogens by rabbit liver preparations. Cancer Res 46:1089–1093

    PubMed  CAS  Google Scholar 

  • Taylor YC, Rauth AM (1982) Oxygen tension, cellular respiration, and redox state as variables influencing the cytotoxicity of the radiosensitizer misonidazole. Radiat Res 91:104–123

    PubMed  CAS  Google Scholar 

  • Taylor M, Billiot F, Marty V et al (2012) Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells. Cancer Discov 2:434–449

    PubMed  CAS  Google Scholar 

  • Tercel M, Denny WA, Wilson WR (1996a) A novel nitro-substituted seco-CI—application as a reductively activated adept prodrug. Bioorg Med Chem Lett 6:2741–2744

    CAS  Google Scholar 

  • Tercel M, Denny WA, Wilson WR (1996b) Nitrogen and sulfur analogues of the seco-co alkylating agent—synthesis and cytotoxicity. Bioorg Med Chem Lett 6:2735–2740

    CAS  Google Scholar 

  • Tercel M, Gieseg MA, Denny WA et al (1999a) Synthesis and cytotoxicity of amino-seco-DSA: an amino analogue of the DNA alkylating agent duocarmycin SA. J Org Chem 64:5946–5953

    CAS  Google Scholar 

  • Tercel M, Gieseg MA, Milbank JB et al (1999b) Cytotoxicity and DNA interaction of the enantiomers of 6-amino-3- (chloromethyl)-1-[(5,6,7-trimethoxyindol-2-yl)carbonyl]indo- line (amino-seco-CI-TMI). Chem Res Toxicol 12:700–706

    CAS  Google Scholar 

  • Tercel M, Lee AE, Hogg A et al (2001) Hypoxia-selective antitumor agents. 16. Nitroarylmethyl quaternary salts as bioreductive prodrugs of the alkylating agent mechlorethamine. J Med Chem 44:3511–3522

    PubMed  CAS  Google Scholar 

  • Tercel M, Atwell GJ, Yang S et al (2009) Hypoxia-activated prodrugs: substituent effects on the properties of nitro seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (nitroCBI)prodrugs of DNA minor groove alkylating agents. J Med Chem 52:7258–7272

    PubMed  CAS  Google Scholar 

  • Tercel M, Yang S, Atwell GJ et al (2010) Hypoxic selectivity and solubility-investigating the properties of A-ring substituted nitro seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-ones (nitroCBIs) as hypoxia-activated prodrugs for antitumor therapy. Bioorg Med Chem 18:4997–5006

    PubMed  CAS  Google Scholar 

  • Tercel M, Atwell GJ, Yang S et al (2011a) Selective treatment of hypoxic tumor cells in vivo: phosphate pre-prodrugs of nitro analogues of the duocarmycins. Angew Chem 50:2606–2609

    CAS  Google Scholar 

  • Tercel M, Lee HH, Yang S et al (2011b) Preparation and antitumour properties of the enantiomers of a hypoxia-selective nitro analogue of the duocarmycins. ChemMedChem 6:1860–1871

    CAS  Google Scholar 

  • Tichenor MS, Boger DL (2008) Yatakemycin: total synthesis, DNA alkylation, and biological properties. Nat Prod Rep 25:220–226

    PubMed  CAS  Google Scholar 

  • Toustrup K, Sorensen BS, Nordsmark M et al (2011) Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res 71:5923–5931

    PubMed  CAS  Google Scholar 

  • Toustrup K, Sorensen BS, Alsner J et al (2012) Hypoxia gene expression signatures as prognostic and predictive markers in head and neck radiotherapy. Semin Radiat Oncol 22:119–127

    PubMed  Google Scholar 

  • Ueda O, Kitamura S, Ohashi K et al (2003) Xanthine oxidase-catalysed metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin. Drug Metab Dispos 31:367–372

    PubMed  CAS  Google Scholar 

  • Vass SO, Jarrom D, Wilson WR et al (2009) E. coli NfsA: an alternative nitroreductase for prodrug activation gene therapy in combination with CB1954. Br J Cancer 100:1903–1911

    PubMed  CAS  Google Scholar 

  • Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    PubMed  CAS  Google Scholar 

  • Vaupel P, Hockel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235

    PubMed  CAS  Google Scholar 

  • Velica P, Davies NJ, Rocha PP et al (2009) Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers. Mol Cancer 8:121–132

    PubMed  Google Scholar 

  • Vergote I, Finkler N, del Campo J et al (2009) Phase 3 randomised study of canfosfamide (Telcyta, TLK286) versus pegylated liposomal doxorubicin or topotecan as third-line therapy in patients with platinum-refractory or -resistant ovarian cancer. Eur J Cancer 45:2324–2332

    Google Scholar 

  • von Pawel J, von Roemeling R, Gatzemeier U et al (2000) Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and tirapazamine in subjects with advanced previously untreated non-small-cell lung tumors. J Clin Oncol 18:1351–1359

    Google Scholar 

  • Walton MI, Workman P (1993) Pharmacokinetics and bioreductive metabolism of the novel benzotriazine di-N-oxide hypoxic cell cytotoxin tirapazamine (WIN 59075; SR 4233; NSC 130181) in mice. J Pharmacol Exp Ther 265:938–947

    PubMed  CAS  Google Scholar 

  • Wang Y, Ohh M (2010) Oxygen-mediated endocytosis in cancer. J Cell Mol Med 14:496–503

    PubMed  CAS  Google Scholar 

  • Wang J, Foehrenbacher A, Su J et al (2012) The 2-nitroimidazole EF5 is a biomarker for oxidoreductases that activate bioreductive prodrug CEN-209 under hypoxia. Clin Cancer Res 18:1684–1695

    PubMed  CAS  Google Scholar 

  • Wardman P (2001) Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr Med Chem 8:739–761

    PubMed  CAS  Google Scholar 

  • Weiss GJ, Infante JR, Chiorean EG et al (2011) Phase 1 study of the safety, tolerability and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin Cancer Res 17:2997–3004

    PubMed  CAS  Google Scholar 

  • Whillans DW, Hunt JW (1982) A rapid-mixing comparison of the mechanisms of radiosensitization by oxygen and misonidazole in CHO cells. Radiat Res 90:126–141

    PubMed  CAS  Google Scholar 

  • Williamson SK, Crowley JJ, Lara PN Jr et al (2005) Phase III trial of paclitaxel plus carboplatin with or without tirapazamine in advanced non-small-cell lung cancer: Southwest Oncology Group Trial S0003. J Clin Oncol 23:9097–9104

    PubMed  CAS  Google Scholar 

  • Wilson WR, Ferry DM, Tercel M et al (1998) Reduction of nitroarylmethyl quaternary ammonium prodrugs of mechlorethamine by radiation. Radiat Res 149:237–245

    PubMed  CAS  Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410

    PubMed  CAS  Google Scholar 

  • Wilson WR, Pullen SM, Hogg A et al (2002) Quantitation of bystander effects in nitroreductase suicide gene therapy using three-dimensional cell cultures. Cancer Res 62:1425–1432

    PubMed  CAS  Google Scholar 

  • Wilson WR, Hicks KO, Pullen SM et al (2007) Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with dinitrobenzamide mustards. Radiat Res 167:625–636

    PubMed  CAS  Google Scholar 

  • Wilson WR, Stribbling SM, Pruijn FB et al (2009) Nitro-chloromethylindolines: hypoxia-activated prodrugs of potent adenine N3 DNA minor groove alkylators. Mol Cancer Ther 8:2903–2913

    PubMed  CAS  Google Scholar 

  • Workman P, Stratford IJ (1993) The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev 12:73–82

    PubMed  CAS  Google Scholar 

  • Wouters BG, Brown JM (1997) Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res 147:541–550

    PubMed  CAS  Google Scholar 

  • Wouters BG, Delahoussaye YM, Evans JW et al (2001) Mitochondrial dysfunction after aerobic exposure to the hypoxic cytotoxin tirapazamine. Cancer Res 61:145–152

    PubMed  CAS  Google Scholar 

  • Xia Y, Choi HK, Lee K (2012) Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 49:24–40

    PubMed  CAS  Google Scholar 

  • Yin J, Glaser R, Gates KS (2012) On the reaction mechanism of tirapazamine reduction chemistry: unimolecular N-OH homolysis, stepwise dehydration, or triazene ring-opening. Chem Res Toxicol 25:634–645

    PubMed  CAS  Google Scholar 

  • Zeman EM, Brown JM, Lemmon MJ et al (1986) SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys 12:1239–1242

    PubMed  CAS  Google Scholar 

  • Zeman EM, Hirst VK, Lemmon MJ et al (1988) Enhancement of radiation-induced tumor cell killing by the hypoxic cell toxin SR 4233. Radiother Oncol 12:209–218

    PubMed  CAS  Google Scholar 

  • Zeman EM, Baker MA, Lemmon MJ et al (1989) Structure-activity relationships for benzotriazine di-N-oxides. Int J Radiat Oncol Biol Phys 16:977–981

    PubMed  CAS  Google Scholar 

  • Zhu R, Liu MC, Luo MZ et al (2011) 4-nitrobenzyloxycarbonyl derivatives of O(6)-benzylguanine as hypoxia-activated prodrug inhibitors of O(6)-alkylguanine-DNA alkyltransferase (AGT), which produces resistance to agents targeting the O-6 position of DNA guanine. J Med Chem 54:7720–7728

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Wilson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, W., Hicks, K., Wang, J., Pruijn, F. (2014). Prodrug Strategies for Targeting Tumour Hypoxia. In: Melillo, G. (eds) Hypoxia and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9167-5_13

Download citation

Publish with us

Policies and ethics