Skip to main content

Abstract

Lipid-based nanoparticles such as liposomes have been at the forefront of drug delivery science since their discovery in the 1960s. Although liposomes were used initially as model membrane systems, creative scientists quickly saw the potential for liposomes as drug carriers. Since then, liposomes have been used as small-scale carrier systems capable of delivering low molecular weight drugs as well as large proteins and even therapeutic nucleic acid sequences. These formulations can be designed to passively target areas of disease. Additionally, lipid composition may be used to control when and where a liposome-associated therapeutic agent is released. In this chapter, the general makeup of lipid carriers, the manufacturing processes used to generate them, important physical characteristics, and their behavior in vivo are discussed. Examples of biomedical applications are given, including a review of some liposomal drug formulations that have already been approved for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAT:

Alpha-1antitrypsin

ASON:

Antisense oligonucleotides

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

CTL:

Cytotoxic T lymphocytes

DDS:

Drug delivery system

dLOS:

Deacylated lipooligosaccharide

DOPC:

1,2-dioleoyl-sn-glycero-3-phosphocholine

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP:

1,2-dioleoyl-3-trimethylammonium- propane (chloride salt)

DOTMA:

N-[1-(2, 3-dioleyloyx) propyl]-N-N-N-trimethyl ammonia chloride

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DSPC:

Distearoylphosphatidylcholine

EM:

Electron microscopy

EPR:

Enhanced permeability and retention

GC:

Glucocorticoid

HAV:

Hepatitis A virus

hdls:

High-density lipoproteins

i.v.:

An intravenous

IBD:

Inflammatory bowel disease

LUV:

Large unilamellar vesicle

MHCII:

Major histocompatibility complex class II

MLV:

Multilaminar vesicles

MPS:

Mononuclear phagocytic system

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

OMP:

Purified outer membrane proteins

PEG:

Polyethylene glycol

PKN3:

Protein kinase N3

RES:

Reticuloendothelial system

SAXS:

Small angle X-ray scattering

SDBS:

Sodium dodecylbenzene sulfonate

SEC:

Size exclusion chromatography

siRNA:

Small interfering ribonucleic acids

SUV:

Small unilamellar vesicle

T c :

Transition temperature

VEGF:

Vascular endothelial growth factor

References

  • Agrawal B et al (1998) Rapid induction of primary human CD4+ and CD8+ T cell responses against cancer-associated MUC1 peptide epitopes. Int Immunol 10(12):1907–1916

    Article  PubMed  CAS  Google Scholar 

  • Aleku M et al (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798

    Article  PubMed  CAS  Google Scholar 

  • Allen C et al (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 22(2):225–250

    Article  PubMed  CAS  Google Scholar 

  • Alving CR et al (1996) Immunization with cholesterol-rich liposomes induces anti-cholesterol antibodies and reduces diet-induced hypercholesterolemia and plaque formation. J Lab Clin Med 127(1):40–49

    Article  PubMed  CAS  Google Scholar 

  • Anderson M, Omri A (2004) The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv 11(1):33–39

    Article  PubMed  CAS  Google Scholar 

  • Aramaki Y (2000) Liposomes as immunomodulator—inhibitory effect of liposomes on NO production from macrophages. Biol Pharm Bull 23(11):1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Awasthi VD et al (2004) Kinetics of liposome-encapsulated hemoglobin after 25% hypovolemic exchange transfusion. Int J Pharm 283(1–2):53–62

    Article  PubMed  CAS  Google Scholar 

  • Bailey AL, Cullis PR (1997) Membrane fusion with cationic liposomes: effects of target membrane lipid composition. Biochemistry 36(7):1628–1634

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD (1978) Properties and uses of lipid vesicles: an overview. Ann N Y Acad Sci 308:2–7

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD (1993) Liposomes: the Babraham connection. Chem Phys Lipids 64(1–3):275–285

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  PubMed  CAS  Google Scholar 

  • Barenholzt Y, Amselem S, Lichtenberg D (1979) A new method for preparation of phospholipid vesicles (liposomes)—French press. FEBS Lett 99(1):210–214

    Article  PubMed  CAS  Google Scholar 

  • Belliveau NM et al (2012) Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 1:e37

    Article  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  PubMed  CAS  Google Scholar 

  • Bovier PA (2008) Epaxal: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines 7(8):1141–1150

    Article  PubMed  CAS  Google Scholar 

  • Brigham KL et al (2000) Transfection of nasal mucosa with a normal alpha1-antitrypsin gene in alpha1-antitrypsin-deficient subjects: comparison with protein therapy. Hum Gene Ther 11(7):1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Butler KW, Smith IC (1978) Sterol ordering effects and permeability regulation in phosphatidylcholine bilayers. A comparison of ESR spin-probe data from oriented multilamellae and dispersions. Can J Biochem 56(2):117–122

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Molday RS, Hu J (2011) Gene therapy: light is finally in the tunnel. Protein Cell 2(12):973–989

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Watts A, Marsh D (1981) Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. Biochemistry 20(17):4955–4965

    Article  PubMed  CAS  Google Scholar 

  • Chiu GN, Bally MB, Mayer LD (2001) Selective protein interactions with phosphatidylserine containing liposomes alter the steric stabilization properties of poly(ethylene glycol). Biochim Biophys Acta 1510(1–2):56–69

    Article  PubMed  CAS  Google Scholar 

  • Chiu GN, Bally MB, Mayer LD (2003) Targeting of antibody conjugated, phosphatidylserine-containing liposomes to vascular cell adhesion molecule 1 for controlled thrombogenesis. Biochim Biophys Acta 1613(1–2):115–121

    Article  PubMed  CAS  Google Scholar 

  • Dass CR (2004) Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection. J Mol Med (Berl) 82(9):579–591

    Article  CAS  Google Scholar 

  • Dasta J et al (2012) Bupivacaine liposome injectable suspension compared with bupivacaine HCl for the reduction of opioid burden in the postsurgical setting. Curr Med Res Opin 28(10):1609–1615

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos N et al (2005) Substantial increases in idarubicin plasma concentration by liposome encapsulation mediates improved antitumor activity. J Control Release 105(1–2):89–105

    Article  PubMed  Google Scholar 

  • Dos Santos N et al (2007) Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 1768(6):1367–1377

    Article  PubMed  Google Scholar 

  • Dritschilo A et al (2006) Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin Cancer Res 12(4):1251–1259

    Article  PubMed  CAS  Google Scholar 

  • Ewert KK et al (2010) Cationic liposome-nucleic acid complexes for gene delivery and silencing: pathways and mechanisms for plasmid DNA and siRNA. Top Curr Chem 296:191–226

    Article  PubMed  CAS  Google Scholar 

  • Farhat FS et al (2011) A phase II study of lipoplatin (liposomal cisplatin)/vinorelbine combination in HER-2/neu-negative metastatic breast cancer. Clin Breast Cancer 11(6):384–389

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL (1991) Cationic liposome-mediated transfection with lipofectin reagent. Methods Mol Biol 7:81–89

    PubMed  CAS  Google Scholar 

  • Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med 295(14):765–770

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G (1978) Liposomes in therapeutic and preventive medicine: the development of the drug-carrier concept. Ann N Y Acad Sci 308:343–370

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Buckland RA (1973) Enzyme-containing liposomes alleviate a model for storage disease. Nature 244(5412):170–172

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Ryman BE (1972) Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur J Biochem 24(3):485–491

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Leathwood PD, Ryman BE (1971) Enzyme entrapment in liposomes. FEBS Lett 14(2):95–99

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GD et al (1997) Liposomally-encapsulated ricin toxoid vaccine delivered intratracheally elicits a good immune response and protects against a lethal pulmonary dose of ricin toxin. Vaccine 15(17–18):1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GD et al (1998) Local and systemic responses against ricin toxin promoted by toxoid or peptide vaccines alone or in liposomal formulations. Vaccine 16(5):530–535

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GD, Phillips GJ, Bailey SC (1999) Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine 17(20–21):2562–2568

    Article  PubMed  CAS  Google Scholar 

  • Hardin J, Bertoni GP, Kleinsmith LJ (2011) Becker’s world of the cell, 8th edn. San Fransisco- Pearson Education

    Google Scholar 

  • Ho EA et al (2010) Characterization of cationic liposome formulations designed to exhibit extended plasma residence times and tumor vasculature targeting properties. J Pharm Sci 99(6):2839–2853

    PubMed  CAS  Google Scholar 

  • Hope MJ et al (1985) Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Hossann M et al (2013) Non-ionic Gd-based MRI contrast agents are optimal for encapsulation into phosphatidyldiglycerol-based thermosensitive liposomes. J Control Release 166(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22(2):197–224

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Bangham AD (1969) Potassium permeability of single compartment liposomes with and without valinomycin. Biochim Biophys Acta 193(1):82–91

    Article  PubMed  CAS  Google Scholar 

  • Kapoor M, Burgess DJ, Patil SD (2012) Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 427(1):35–57

    Article  PubMed  CAS  Google Scholar 

  • Kay JG, Grinstein S (2011) Sensing phosphatidylserine in cellular membranes. Sensors (Basel) 11(2):1744–1755

    Article  CAS  Google Scholar 

  • Kirby C, Clarke J, Gregoriadis G (1980) Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 186(2):591–598

    PubMed  CAS  Google Scholar 

  • Kiwada H, Matsuo H, Harashima H (1998) Identification of proteins mediating clearance of liposomes using a liver perfusion system. Adv Drug Deliv Rev 32(1–2):61–79

    PubMed  Google Scholar 

  • Knowles MR et al (1998) A double-blind, placebo controlled, dose ranging study to evaluate the safety and biological efficacy of the lipid-DNA complex GR213487B in the nasal epithelium of adult patients with cystic fibrosis. Hum Gene Ther 9(2):249–269

    Article  PubMed  CAS  Google Scholar 

  • Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18(7):385–393

    Article  PubMed  CAS  Google Scholar 

  • Krause W, Schonborn A, Rupp K (2011) CT imaging with iopromide liposomes in a rabbit model. J Liposome Res 21(3):229–236

    Article  PubMed  CAS  Google Scholar 

  • LaBelle EF, Racker E (1977) Cholesterol stimulation of penetration of unilamellar liposomes by hydrophobic compounds. J Membr Biol 31(3):301–315

    PubMed  CAS  Google Scholar 

  • Laitinen M et al (2000) Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 11(2):263–270

    Article  PubMed  CAS  Google Scholar 

  • Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    PubMed  CAS  Google Scholar 

  • Mauk MR, Gamble RC (1979) Stability of lipid vesicles in tissues of the mouse: a gamma-ray perturbed angular correlation study. Proc Natl Acad Sci USA 76(2):765–769

    Article  PubMed  CAS  Google Scholar 

  • Maurer N et al (1999) Lipid-based systems for the intracellular delivery of genetic drugs. Mol Membr Biol 16(1):129–140

    Article  PubMed  CAS  Google Scholar 

  • Mayer LD et al (1985) Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta 817(1):193–196

    Article  PubMed  CAS  Google Scholar 

  • Miller CR et al (1998) Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37(37):12875–12883

    Article  PubMed  CAS  Google Scholar 

  • Mirahmadi N et al (2010) Effect of liposome size on peritoneal retention and organ distribution after intraperitoneal injection in mice. Int J Pharm 383(1–2):7–13

    Article  PubMed  CAS  Google Scholar 

  • Morgan JR et al (1981) Localisation of experimental staphylococcal abscesses by 99MTC-technetium-labelled liposomes. J Med Microbiol 14(2):213–217

    Article  PubMed  CAS  Google Scholar 

  • Morse MA (2000) Technology evaluation: gene therapy (IL-2), Valentis Inc. Curr Opin Mol Ther 2(4):448–452

    PubMed  CAS  Google Scholar 

  • Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10(4):711–719

    PubMed  CAS  Google Scholar 

  • Mozafari MR (2010) Nanoliposomes: preparation and analysis. Methods Mol Biol 605:29–50

    Article  PubMed  CAS  Google Scholar 

  • Nagayasu A, Uchiyama K, Kiwada H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40(1–2):75–87

    Article  PubMed  CAS  Google Scholar 

  • Nagy JA et al (1995) Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Res 55(2):360–368

    PubMed  CAS  Google Scholar 

  • Okusanya OO et al (2009) Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother 53(9):3847–3854

    Article  PubMed  CAS  Google Scholar 

  • Olson F et al (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557(1):9–23

    Article  PubMed  CAS  Google Scholar 

  • Oyen WJ et al (1996) Detecting infection and inflammation with technetium-99m-labeled Stealth liposomes. J Nucl Med 37(8):1392–1397

    PubMed  CAS  Google Scholar 

  • Perkins WR et al (1988) The captured volume of multilamellar vesicles. Biochim Biophys Acta 943(1):103–107

    Article  PubMed  CAS  Google Scholar 

  • Pidgeon C et al (1987) Multilayered vesicles prepared by reverse-phase evaporation: liposome structure and optimum solute entrapment. Biochemistry 26(1):17–29

    Article  PubMed  CAS  Google Scholar 

  • Porteous DJ et al (1997) Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4(3):210–218

    Article  PubMed  CAS  Google Scholar 

  • Poste G et al (1979) Activation of tumoricidal properties in mouse macrophages by lymphokines encapsulated in liposomes. Cancer Res 39(3):881–892

    PubMed  CAS  Google Scholar 

  • Reimer DL et al (1995) Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. Biochemistry 34(39):12877–12883

    Article  PubMed  CAS  Google Scholar 

  • Rudin CM et al (2004) Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin Cancer Res 10(21):7244–7251

    Article  PubMed  CAS  Google Scholar 

  • Schroeder A et al (2010) Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert Opin Drug Deliv 7(10):1175–1189

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, Weissmann G (1968) Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 9(3):310–318

    PubMed  CAS  Google Scholar 

  • Straubinger RM, Papahadjopoulos D (1983) Liposomes as carriers for intracellular delivery of nucleic acids. Methods Enzymol 101:512–527

    Article  PubMed  CAS  Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    Article  PubMed  CAS  Google Scholar 

  • Tari AM et al (1994) Interactions of liposome bilayers composed of 1,2-diacyl-3-succinylglycerol with protons and divalent cations. Biochim Biophys Acta 1192(2):253–262

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  PubMed  CAS  Google Scholar 

  • Tranchant I et al (2004) Physicochemical optimisation of plasmid delivery by cationic lipids. J Gene Med 6(suppl 1):S24–S35

    Article  PubMed  CAS  Google Scholar 

  • van den Hoven JM et al (2011) Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm 8(4):1002–1015

    Article  PubMed  Google Scholar 

  • van Swaay D, deMello A (2013) Microfluidic methods for forming liposomes. Lab Chip 13(5):752–767

    Article  PubMed  Google Scholar 

  • Waterhouse DN et al (2001) A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf 24(12):903–920

    Article  PubMed  CAS  Google Scholar 

  • Wong FM, Reimer DL, Bally MB (1996) Cationic lipid binding to DNA: characterization of complex formation. Biochemistry 35(18):5756–5763

    Article  PubMed  CAS  Google Scholar 

  • Wong FM et al (2002) A lipid-based delivery system for antisense oligonucleotides derived from a hydrophobic complex. J Drug Target 10(8):615–623

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Nakanishi H (2011) Phosphatidylserine-containing liposomes: potential pharmacological interventions against inflammatory and immune diseases through the production of prostaglandin E(2) after uptake by myeloid derived phagocytes. Arch Immunol Ther Exp (Warsz) 59(3):195–201

    Article  CAS  Google Scholar 

  • Xu L, Anchordoquy TJ (2010) Effect of cholesterol nanodomains on the targeting of lipid-based gene delivery in cultured cells. Mol Pharm 7(4):1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Khan MA, Burgess DJ (2011) A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int J Pharm 419(1–2):52–59

    Article  PubMed  CAS  Google Scholar 

  • Yoo GH et al (2001) Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res 7(5):1237–1245

    PubMed  CAS  Google Scholar 

  • Yoshioka H (1991) Surface modification of haemoglobin-containing liposomes with polyethylene glycol prevents liposome aggregation in blood plasma. Biomaterials 12(9):861–864

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Anchordoquy TJ (2004) The role of lipid charge density in the serum stability of cationic lipid/DNA complexes. Biochim Biophys Acta 1663(1–2):143–157

    Article  PubMed  CAS  Google Scholar 

  • Zollinger WD et al (2012) Phase I study of a Neisseria meningitidis liposomal vaccine containing purified outer membrane proteins and detoxified lipooligosaccharide. Vaccine 30(4):712–721

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Kalra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kalra, J., Bally, M.B. (2013). Liposomes. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_3

Download citation

Publish with us

Policies and ethics