Skip to main content

Peptides, Proteins and Antibodies

  • Chapter
  • First Online:
  • 2804 Accesses

Abstract

Peptide and protein therapeutics are increasingly able to address a growing range of clinical pathologies and their high specificity and potency combined with low toxicity of metabolic products and minimal potential for drug–drug interactions makes them attractive candidates for clinical development. The pharmaceutical industry is today more in need of delivery technologies that are able to stabilise and effectively deliver therapeutic peptides and proteins across physiological barriers and particularly via non-parenteral routes. Nanoparticulate delivery has the potential to stabilise peptide and protein therapeutics from physical and enzymatic degradation, reduce clearance via the kidneys, prolong plasma half-lives and even target these molecules to the tissue of interest. Nanoparticulate technologies have enabled the delivery of peptide therapeutics via the oral, nasal and pulmonary route and numerous preclinical nano-delivery systems such as polymeric nanoparticles, lipidic nanoparticles and drug–polymer conjugates have been investigated for the delivery of protein therapeutics. In this chapter, a description of these delivery systems and their applications will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acke E, McGill K, Quinn T, Jones BR, Fanning S, Whyte P (2009) Antimicrobial resistance profiles and mechanisms of resistance in Campylobacter jejuni isolates from pets. Foodborne Pathog Dis 6(6):705–710

    PubMed  CAS  Google Scholar 

  • Agu RU, Dang HV, Jorissen M, Willems T, Kinget R, Verbeke N (2002) Nasal absorption enhancement strategies for therapeutic peptides: an in vitro study using cultured human nasal epithelium. Int J Pharm 237(1–2):179–191

    PubMed  CAS  Google Scholar 

  • Bailey MM, Berkland CJ (2009) Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 29(1):196–212

    PubMed  CAS  Google Scholar 

  • Balan S, Choi JW, Godwin A, Teo I, Laborde CM, Heidelberger S, Zloh M, Shaunak S, Brocchini S (2007) Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjug Chem 18(1):61–76

    PubMed  CAS  Google Scholar 

  • Banerjee PS, Hosny EA, Robinson JR (1991) Parenteral delivery of peptide and protein drug. In: Lee VHL (ed) Peptide and protein drug delivery. Marcel Dekker, New York, pp 487–543

    Google Scholar 

  • Banga AK (2006) Pulmonary and other mucosal delivery of therapeutic peptides and proteins. In: Banga AK (ed) Therapeutic peptides and proteins. Taylor & Francis, Boca Raton, FL, pp 291–326

    Google Scholar 

  • Bernkop-Schnurch A, Krajicek ME (1998) Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J Control Release 50(1–3):215–223

    PubMed  CAS  Google Scholar 

  • Bernkop-Schnurch A, Thaler SC (2000) Polycarbophil-cysteine conjugates as platforms for oral polypeptide delivery systems. J Pharm Sci 89(7):901–909

    PubMed  CAS  Google Scholar 

  • Borchardt R, Aube J, Siahaan TJ, Gangwar S, Pauletti GM (1997) Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 27(2–3):235–256

    Google Scholar 

  • Brown LR (2005) Commercial challenges of protein drug delivery. Expert Opin Drug Deliv 2(1):29–42

    PubMed  Google Scholar 

  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14(10):1431–1436

    PubMed  CAS  Google Scholar 

  • Carino GP, Jacob JS, Mathiowitz E (2000) Nanosphere based oral insulin delivery. J Control Release 65(1–2):261–269

    PubMed  CAS  Google Scholar 

  • Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK (2007a) Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release 122(2):141–150

    PubMed  CAS  Google Scholar 

  • Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK (2007b) A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 117(3):421–429

    PubMed  CAS  Google Scholar 

  • Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54(4):531–545

    PubMed  CAS  Google Scholar 

  • Cleland JL, Daugherty A, Mrsny R (2001) Emerging protein delivery methods. Curr Opin Biotechnol 12(2):212–219

    PubMed  CAS  Google Scholar 

  • Cui FD, Tao AJ, Cun DM, Zhang LQ, Shi K (2007) Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci 96(2):421–427

    PubMed  CAS  Google Scholar 

  • Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C (2009) Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules 10(5):1253–1258

    PubMed  CAS  Google Scholar 

  • Damge C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37(2):246–251

    PubMed  CAS  Google Scholar 

  • Damge C, Vonderscher J, Marbach P, Pinget M (1997) Poly(alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. J Pharm Pharmacol 49(10):949–954

    PubMed  CAS  Google Scholar 

  • Damge C, Maincent P, Ubrich N (2007) Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117(2):163–170

    PubMed  CAS  Google Scholar 

  • Damge C, Socha M, Ubrich N, Maincent P (2010) Poly(epsilon-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J Pharm Sci 99(2):879–889

    PubMed  CAS  Google Scholar 

  • Goycoolea FM, Lollo G, Remunan-Lopez C, Quaglia F, Alonso MJ (2009) Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules 10(7):1736–1743

    PubMed  CAS  Google Scholar 

  • Graf A, Rades T, Hook SM (2009) Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation. Eur J Pharm Sci 37(1):53–61

    PubMed  CAS  Google Scholar 

  • Griffin BT, O’Driscoll CM (2011) Opportunities and challenges for oral delivery of hydrophobic versus hydrophilic peptide and protein-like drugs using lipid-based technologies. Ther Deliv 2(12):1633–1653

    PubMed  CAS  Google Scholar 

  • Grotte G (1956) Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl 211:1–84

    PubMed  CAS  Google Scholar 

  • Grotte G, Juhlin L, Sandberg N (1960) Passage of solid spherical particles across the blood-lymph barrier. Acta Physiol Scand 50:287–293

    PubMed  CAS  Google Scholar 

  • Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22

    PubMed  CAS  Google Scholar 

  • Havelund S (2002) Pulmonary insulin crystals. US0198140 A1

    Google Scholar 

  • Heller J (1993) Polymers for controlled parenteral delivery of peptides and proteins. Adv Drug Deliv Rev 10:163–204

    CAS  Google Scholar 

  • Heller J, Helwing RF, Baker RW, Tuttle ME (1983) Controlled release of water-soluble macromolecules from bioerodible hydrogels. Biomaterials 4(4):262–266

    PubMed  CAS  Google Scholar 

  • Heller J, Barr J, Ng SY, Shen HR, Schwach-Abdellaoui K, Einmahl S, Rothen-Weinhold A, Gurny R (2000) Poly(ortho esters)—their development and some recent applications. Eur J Pharm Biopharm 50(1):121–128

    PubMed  CAS  Google Scholar 

  • Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21(11):484–490

    PubMed  CAS  Google Scholar 

  • Huang H, Wu S, Wang M, Zhang Y, Fang H, Palmgren AC, Weintraub A, Nord CE (2009) Clostridium difficile infections in a Shanghai hospital: antimicrobial resistance, toxin profiles and ribotypes. Int J Antimicrob Agents 33(4):339–342

    PubMed  CAS  Google Scholar 

  • Hussain AA, Iseki K, Kagoshima M, Dittert LW (1990) Hydrolysis of peptides in the nasal cavity of humans. J Pharm Sci 79(10):947–948

    PubMed  CAS  Google Scholar 

  • Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11(1):1–18

    PubMed  CAS  Google Scholar 

  • Illum L (2003) Nasal drug delivery–possibilities, problems and solutions. J Control Release 87(1–3):187–198

    PubMed  CAS  Google Scholar 

  • Illum L (2007) Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 96(3):473–483

    PubMed  CAS  Google Scholar 

  • Illum L (2012) Nasal drug delivery—recent developments and future prospects. J Control Release 161(2):254–263

    PubMed  CAS  Google Scholar 

  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51(1–3):81–96

    PubMed  CAS  Google Scholar 

  • Irwin WJ, Dwivedi AK, Holbrook PA, Dey MJ (1994) The effect of cyclodextrins on the stability of peptides in nasal enzymic systems. Pharm Res 11(12):1698–1703

    PubMed  CAS  Google Scholar 

  • Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47(1):83–97

    PubMed  CAS  Google Scholar 

  • Joabsson F, Tiberg F (2013) FluidCrystal® NP Injection nanoparticles. http://www.camurus.com/backend/fsheets/fluidcrystal%C2%AE_np-injection_nanoparticles.pdf. Accessed 25 March 2013

  • Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18(3):352–360

    PubMed  CAS  Google Scholar 

  • Kamaly N, Fredman G, Subramanian M, Gadde S, Pesic A, Cheung L, Fayad ZA, Langer R, Tabas I, Farokhzad OC (2013) Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc Natl Acad Sci USA 110(16):6506–6511

    PubMed  CAS  Google Scholar 

  • Kanwar JR, Long BM, Kanwar RK (2011) The use of cyclodextrins nanoparticles for oral delivery. Curr Med Chem 18(14):2079–2085

    PubMed  CAS  Google Scholar 

  • Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T (1999) Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release 62(1–2):279–287

    PubMed  CAS  Google Scholar 

  • Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y (2000) Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol 5(1):77–85

    PubMed  CAS  Google Scholar 

  • Keegan A (2007) Exit exubera. Inhalable insulin is withdrawn due to weak sales. Diabetes Forecast 60(13):19

    PubMed  Google Scholar 

  • Khutoryanskiy VV (2011) Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci 11(6):748–764

    PubMed  CAS  Google Scholar 

  • King DJ, Adair JR (1999) Recombinant antibodies for the diagnosis and therapy of human diseases. Curr Opin Drug Discov Devel 2(2):110–117

    PubMed  CAS  Google Scholar 

  • Kinstler O, Molineux G, Treuheit M, Ladd D, Gegg C (2002) Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 54(4):477–485

    PubMed  CAS  Google Scholar 

  • Kramer TH, Toth G, Haaseth RC, Matsunaga TO, Davis P, Hruby VJ, Burks TF (1991) Influence of peptidase inhibitors on the apparent agonist potency of delta selective opioid peptides in vitro. Life Sci 48(9):881–886

    PubMed  CAS  Google Scholar 

  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10(4):317–325

    PubMed  CAS  Google Scholar 

  • Lalatsa A, Schätchlein AG, Uchegbu IF (2011) Drug delivery across the blood-brain barrier. In: Moo-Young M, Butler M, Webb C, Moreira A, Grodzinski B, Cui Z (eds) Comprehensive biotechnology. Elsevier, Amsterdam, pp 657–668

    Google Scholar 

  • Lalatsa A, Garrett NL, Ferrarelli T, Moger J, Schatzlein AG, Uchegbu IF (2012a) Delivery of peptides to the blood and brain after oral uptake of quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm 9(6):1764–1774

    PubMed  CAS  Google Scholar 

  • Lalatsa A, Lee V, Malkinson JP, Zloh M, Schatzlein AG, Uchegbu IF (2012b) A prodrug nanoparticle approach for the oral delivery of a hydrophilic peptide, leucine(5)-enkephalin, to the brain. Mol Pharm 9(6):1665–1680

    PubMed  CAS  Google Scholar 

  • Langguth P, Bohner V, Heizmann J, Merkle HP, Wolffram S, Amidon GL, Yamashita S (1997) The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release 46:39–57

    Google Scholar 

  • Lax R (2010) The future of peptide development in the pharmaceutical industry. PharManufacturing: The International Peptide Review. http://www.polypeptide.com. Accessed 25 March 2013

  • Li P, Nielsen HM, Mullertz A (2012) Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin Drug Deliv 9(10):1289–1304

    PubMed  CAS  Google Scholar 

  • Li J, Zhang C, Li J, Fan L, Jiang X, Chen J, Pang Z, Zhang Q (2013) Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides. Pharm Res 30(7):1813–1823

    PubMed  CAS  Google Scholar 

  • Liu L, Xu K, Wang H, Tan PK, Fan W, Venkatraman SS, Li L, Yang YY (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463

    PubMed  CAS  Google Scholar 

  • Lowe PJ, Temple CS (1994) Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol 46(7): 547–552

    PubMed  CAS  Google Scholar 

  • Madara JL (2000) Modulation of tight junctional permeability. Adv Drug Deliv Rev 41(3):251–253

    Google Scholar 

  • Mahato RI, Narang AS, Thoma L, Miller DD (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 20(2–3):153–214

    PubMed  CAS  Google Scholar 

  • Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 22(12):2058–2068

    PubMed  CAS  Google Scholar 

  • Mazza M, Notman R, Anwar J, Rodger A, Hicks M, Parkinson G, McCarthy D, Daviter T, Moger J, Garrett N, Mead T, Briggs M, Schatzlein AG, Uchegbu IF (2013) Nanofiber-based delivery of therapeutic peptides to the brain. ACS Nano 7:1016–1026

    PubMed  CAS  Google Scholar 

  • Mesiha MS, Sidhom MB, Fasipe B (2005) Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm 288(2):289–293

    PubMed  CAS  Google Scholar 

  • Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi M, Tabata Y, Ikada Y (2000a) Gelatin microspheres as a pulmonary delivery system: evaluation of salmon calcitonin absorption. J Pharm Pharmacol 52(6):611–617

    PubMed  CAS  Google Scholar 

  • Morimoto K, Uehara Y, Iwanaga K, Kakemi M (2000b) Effects of sodium glycocholate and protease inhibitors on permeability of TRH and insulin across rabbit trachea. Pharm Acta Helv 74(4):411–415

    PubMed  CAS  Google Scholar 

  • Nagamoto T, Hattori Y, Takayama K, Maitani Y (2004) Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm Res 21(4):671–674

    PubMed  CAS  Google Scholar 

  • Naito M, Wisse E (1978) Filtration effect of endothelial fenestrations on chylomicron transport in neonatal rat liver sinusoids. Cell Tissue Res 190(3):371–382

    PubMed  CAS  Google Scholar 

  • Olivier JC, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W (1999) Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 16(12):1836–1842

    PubMed  CAS  Google Scholar 

  • Pal S, Peterson EM, de la Maza LM (2005) Vaccination of newborn mice induces a strong protective immune response against respiratory and genital challenges with Chlamydia trachomatis. Vaccine 23(46–47):5351–5358

    PubMed  CAS  Google Scholar 

  • Patton JS (2000) Pulmonary delivery of drugs for bone disorders. Adv Drug Deliv Rev 42(3):239–248

    PubMed  CAS  Google Scholar 

  • Petrus AK, Vortherms AR, Fairchild TJ, Doyle RP (2007) Vitamin B12 as a carrier for the oral delivery of insulin. ChemMedChem 2(12):1717–1721

    PubMed  CAS  Google Scholar 

  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2(2):53–65

    PubMed  Google Scholar 

  • Quan YS, Fujita T, Tohara D, Tsuji M, Kohyama M, Yamamoto A (1999) Transport kinetics of leucine enkephalin across Caco-2 monolayers: quantitative analysis for contribution of enzymatic and transport barrier. Life Sci 64(14):1243–1252

    PubMed  CAS  Google Scholar 

  • Rajender Reddy K, Modi MW, Pedder S (2002) Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv Drug Deliv Rev 54(4):571–586

    PubMed  CAS  Google Scholar 

  • Reichert J (2010) Development trends for peptide therapeutics: a comprehensive quantitative analysis of peptide therapeutics in clinical development. http://www.peptidetherapeutics.org/PTF_report_summary_2010.pdf. Accessed on 25 March 2013

  • Reis CP, Ribeiro AJ, Veiga F, Neufeld RJ, Damge C (2008) Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug Deliv 15(2):127–139

    PubMed  CAS  Google Scholar 

  • Reiss CS, Plakhov IV, Komatsu T (1998) Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann N Y Acad Sci 855:751–761

    PubMed  CAS  Google Scholar 

  • Rekha MR, Sharma CP (2013) Oral delivery of therapeutic protein/peptide for diabetes—future perspectives. Int J Pharm 440(1):48–62

    Google Scholar 

  • Rubas W, Cromwell ME, Shahrokh Z, Villagran J, Nguyen TN, Wellton M, Nguyen TH, Mrsny RJ (1996) Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J Pharm Sci 85(2):165–169

    Google Scholar 

  • Rudd PM, Joao HC, Coghill E, Fiten P, Saunders MR, Opdenakker G, Dwek RA (1994) Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33(1): 17–22

    PubMed  CAS  Google Scholar 

  • Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, McDevitt MR (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA 107(27):12369–12374

    PubMed  CAS  Google Scholar 

  • Runkel L, Meier W, Pepinsky RB, Karpusas M, Whitty A, Kimball K, Brickelmaier M, Muldowney C, Jones W, Goelz SE (1998) Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm Res 15(4):641–649

    PubMed  CAS  Google Scholar 

  • Sabel BA, Schroeder U (1997) Drug targeting system, method of its preparation and its use. PCT/EP1997/003099

    Google Scholar 

  • Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14

    PubMed  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R (2007a) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8(10):3054–3060

    PubMed  CAS  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007b) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24(12):2198–2206

    PubMed  CAS  Google Scholar 

  • Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54(4):487–504

    PubMed  CAS  Google Scholar 

  • Sayani AP, Chun IK, Chien YW (1993) Transmucosal delivery of leucine enkephalin: stabilization in rabbit enzyme extracts and enhancement of permeation through mucosae. J Pharm Sci 82(11):1179–1185

    PubMed  CAS  Google Scholar 

  • Shaji J, Patole V (2008) Protein and Peptide drug delivery: oral approaches. Indian J Pharm Sci 70(3):269–277

    PubMed  Google Scholar 

  • Shen Z, Zhang Q, Wei S, Nagai T (1999) Proteolytic enzymes as a limitation for pulmonary absorption of insulin: in vitro and in vivo investigations. Int J Pharm 192(2):115–121

    PubMed  CAS  Google Scholar 

  • Simon M, Wittmar M, Kissel T, Linn T (2005) Insulin containing nanocomplexes formed by self-assembly from biodegradable amine-modified poly(vinyl alcohol)-graft-poly(L-lactide): bioavailability and nasal tolerability in rats. Pharm Res 22(11):1879–1886

    PubMed  CAS  Google Scholar 

  • Smith BJ, Popplewell A, Athwal D, Chapman AP, Heywood S, West SM, Carrington B, Nesbitt A, Lawson AD, Antoniw P, Eddelston A, Suitters A (2001) Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjug Chem 12(5):750–756

    PubMed  CAS  Google Scholar 

  • Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245

    PubMed  CAS  Google Scholar 

  • Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, Hsu CW, Lin KJ, Sung HW (2010a) Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 31(12):3384–3394

    PubMed  CAS  Google Scholar 

  • Sonaje K, Lin KJ, Wey SP, Lin CK, Yeh TH, Nguyen HN, Hsu CW, Yen TC, Juang JH, Sung HW (2010b) Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Biomaterials 31(26):6849–6858

    PubMed  CAS  Google Scholar 

  • Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570

    PubMed  CAS  Google Scholar 

  • Sweeney PJ, Walker JM (1993) Enzymes of Molecular Biology. Enzymes of Molecular Biology. M. M. Burrell. Totowa, NJ, Humana Press 16:290–291

    Google Scholar 

  • NOD Technology (2012) NOD Tech: enable oral delivery of biopharmaceuticals. http://www.nodpharm.com/nodtech.html. Accessed 25 July 2012

  • Tiberg F, Johhnson F (2010) Lipid liquid crystals for parenteral sustained-release applications: combining ease of use and manufacturing with consistent drug release control. http://www.ondrugdelivery.com/publications/Injectable%20Formulations%202010/Camurus.pdf. Accessed 12 Aug 2012

  • Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15(2):270–275

    PubMed  CAS  Google Scholar 

  • Torchilin VP, Voronkov JI, Mazoev AV (1982) The use of immobilised streptokinase (Strptodekaza) for the therapy of thromboses. Ther Arch 54:21–28

    Google Scholar 

  • Tozaki H, Emi Y, Horisaka E, Fujita T, Yamamoto A, Muranishi S (1997) Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: implications in peptide delivery to the colon. J Pharm Pharmacol 49(2):164–168

    PubMed  CAS  Google Scholar 

  • Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, Alonso MJ (2010) A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm 75(1):26–32

    PubMed  CAS  Google Scholar 

  • Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 99(19):12001–12005

    PubMed  CAS  Google Scholar 

  • Uchida E, Morimoto K, Kawasaki N, Izaki Y, Abdu Said A, Hayakawa T (1997) Effect of active oxygen radicals on protein and carbohydrate moieties of recombinant human erythropoietin. Free Radic Res 27(3):311–323

    PubMed  CAS  Google Scholar 

  • Valery C, Paternostre M, Robert B, Gulik-Krzywicki T, Narayanan T, Dedieu JC, Keller G, Torres ML, Cherif-Cheikh R, Calvo P, Artzner F (2003) Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc Natl Acad Sci USA 100(18):10258–10262

    PubMed  CAS  Google Scholar 

  • van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431(1):37–46

    PubMed  Google Scholar 

  • Van der Walle C (2011) Peptide and protein delivery. Academic Press, London

    Google Scholar 

  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55(4):519–548

    PubMed  CAS  Google Scholar 

  • Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22(5):405–417

    PubMed  CAS  Google Scholar 

  • Veronese FM, Harris JM (2002) Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 54(4):453–456

    PubMed  CAS  Google Scholar 

  • Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. J Control Release 78(1–3):15–24

    PubMed  CAS  Google Scholar 

  • Vila A, Sanchez A, Evora C, Soriano I, Vila Jato JL, Alonso MJ (2004) PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med 17:174–185

    PubMed  CAS  Google Scholar 

  • Weintraub BD, Stannard BS, Meyers L (1983) Glycosylation of thyroid-stimulating hormone in pituitary tumor cells: influence of high mannose oligosaccharide units on subunit aggregation, combination, and intracellular degradation. Endocrinology 112(4):1331–1345

    PubMed  CAS  Google Scholar 

  • White S, Bennett DB, Cheu S, Conley PW, Guzek DB, Gray S, Howard J, Malcolmson R, Parker JM, Roberts P, Sadrzadeh N, Schumacher JD, Seshadri S, Sluggett GW, Stevenson CL, Harper NJ (2005) EXUBERA: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol Ther 7(6):896–906

    PubMed  CAS  Google Scholar 

  • Wisse E, Jacobs F, Topal B, Frederik P, De Geest B (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15(17):1193–1199

    PubMed  CAS  Google Scholar 

  • Woitiski CB, Neufeld RJ, Veiga F, Carvalho RA, Figueiredo IV (2010) Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci 41(3–4):556–563

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Taniguchi T, Rikyuu K, Tsuji T, Fujita T, Murakami M, Muranishi S (1994) Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res 11(10):1496–1500

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y (2005) Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 102(2):373–381

    PubMed  CAS  Google Scholar 

  • Yu JR, Kim S, Lee JB, Chang J (2008) Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J Virol 82(5):2350–2357

    PubMed  CAS  Google Scholar 

  • Zhang Q, Shen Z, Nagai T (2001) Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 218(1–2):75–80

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhang H, Wu Z, Wang Z, Niu H, Li C (2008) Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm 68(3):526–534

    PubMed  CAS  Google Scholar 

  • Zhang CP, Ning YB, Zhang ZQ, Song L, Qiu HS, Gao HY, Fan XZ (2009) Distributions of pathogenic capsular types and in vitro antimicrobial susceptibility of different serotypes of Streptococcus suis isolated from clinically healthy sows from 10 provinces in China. Zhonghua Liu Xing Bing Xue Za Zhi 30(3):235–238

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Lalatsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lalatsa, A. (2013). Peptides, Proteins and Antibodies. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_19

Download citation

Publish with us

Policies and ethics