Skip to main content

Gene and Ribonucleic Acid Therapy

  • Chapter
  • First Online:
Fundamentals of Pharmaceutical Nanoscience

Abstract

Gene and small interfering ribonucleic acid (siRNA) therapies are applicable to a wide range of diseases; diseases where a mutated gene is the basis for the disease, e.g. cystic fibrosis, haemophilia and cancer. However, there are some difficulties with gene and siRNA therapy, i.e. low gene and siRNA internalisation into the cells, instability of the nucleic acid molecule in the cell and the lack of specific gene targeting to the nucleus. Although physical methods exist to deliver naked deoxyribonucleic acid (DNA) into cell nuclei, these methods are inefficient and hence nucleic acid vectors are used. These delivery vectors are viruses, cationic polymers and dendrimers or cationic liposomes; with the synthetic vectors all possessing a mandatory amine functional group. Viral vectors are the most efficient gene vectors and there are currently three licenced products available: Rexin G for the treatment of malignant solid tumours, Gendicine for the treatment of head and neck cancer and Glybera for the treatment of lipoprotein lipase deficiency; these three are gene therapies involving viral vectors. Other nucleic acid delivery vectors that are still in development include amine polymers, dendrimers and liposomes prepared from amine phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balazs DA, Godbey W (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:326497

    Article  PubMed  Google Scholar 

  • Bell HS, Dufes C, O’Prey J, Crighton D, Bergamaschi D, Lu X, Schatzlein AG, Vousden KH, Ryan KM (2007) A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo. J Clin Invest 117:1008–1018

    Article  PubMed  CAS  Google Scholar 

  • Bragonzi A, Boletta A, Biffi A, Muggia A, Sersale G, Cheng SH, Bordignon C, Assael BM, Conese M (1999) Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther 6:1995–2004

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Schatzlein A, Brownlie A, Jack V, Wang W, Tetley L, Gray AI, Uchegbu IF (2000) Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug Chem 11:880–891

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Schatzlein A, Uchegbu IF (2001) Gene delivery with synthetic (non viral) carriers. Int J Pharm 229:1–21

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Gray AI, Tetley L, Santovena A, Rene J, Schatzlein AG, Uchegbu IF (2003) In vitro and in vivo gene transfer with poly(amino acid) vesicles. J Control Release 93:193–211

    Article  PubMed  CAS  Google Scholar 

  • Brownlie A, Uchegbu IF, Schatzlein AG (2004) PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int J Pharm 274:41–52

    Article  PubMed  CAS  Google Scholar 

  • Bruno M (2010) Gene therapy coming of age—prevention of acute pancreatitis in lipoprotein lipase deficiency through alipogene tiparvovec. Eur J Gastroenterol Hepatol Rev 6:48–53

    Google Scholar 

  • Budker VG, Subbotin VM, Budker T, Sebestyen MG, Zhang G, Wolff JA (2006) Mechanism of plasmid delivery by hydrodynamic tail vein injection. II. Morphological studies. J Gene Med 8:874–888

    Article  PubMed  CAS  Google Scholar 

  • Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733

    Article  PubMed  Google Scholar 

  • Bunz F (2008) Principles of cancer genetics. Springer, New York

    Book  Google Scholar 

  • Caplen NJ, Alton EWFW, Middleton PG, Dorin JR, Stevenson BJ, Gao X, Durham SR, Jeffery PK, Hodson ME, Coutelle C, Huang L, Porteous DJ, Williamson R, Geddes DM (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1:39–46

    Article  PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  PubMed  CAS  Google Scholar 

  • Chisholm EJ, Vassaux G, Martin-Duque P, Chevre R, Lambert O, Pitard B, Merron A, Weeks M, Burnet J, Peerlinck I, Dai M-S, Alusi G, Mather SJ, Bolton K, Uchegbu IF, Schatzlein AG, Baril P (2009) Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res 69:2955–2962

    Article  Google Scholar 

  • Chooi KW, Gray AI, Tetley L, Fan YL, Uchegbu IF (2010) The molecular shape of poly(propylenimine) dendrimers has a profound effect on their self assembly. Langmuir 26:2301–2316

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Driskell RA, Engelhardt JF (2003) Current status of gene therapy for inherited lung diseases. Annu Rev Physiol 65:585–612

    Article  PubMed  CAS  Google Scholar 

  • Dufes C, Keith WN, Bilsland A, Proutski I, Uchegbu JF, Schatzlein AG (2005a) Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res 65:8079–8084

    Article  PubMed  CAS  Google Scholar 

  • Dufes C, Uchegbu IF, Schatzlein AG (2005b) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  PubMed  CAS  Google Scholar 

  • Dufes C, Uchegbu IF, Schatzlein AG (2006) Dendrimers in drug and gene delivery. In: Uchegbu IF, Schatzlein AG (eds) Polymers in drug delivery. CRC Press, Boca Raton, FL, pp 199–236

    Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  PubMed  CAS  Google Scholar 

  • El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14

    Article  PubMed  CAS  Google Scholar 

  • Even-Chen S, Cohen R, Barenholz Y (2012) Factors affecting DNA binding and stability of association to cationic liposomes. Chem Phys Lipids 165:414–423

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Florea BI, Meaney C, Junginger HE, Borchard G (2002) Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 4:E12

    Article  PubMed  Google Scholar 

  • Gary DJ, Puri N, Won YY (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 121:64–73

    Article  PubMed  CAS  Google Scholar 

  • Gaudet D, de Wal J, Tremblay K, Déry S, van Deventer S, Freidig A, Brisson D, Méthot J (2010) Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. Atheroscler Suppl 11:55–60

    Article  PubMed  CAS  Google Scholar 

  • Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F, Thomson A, MacVinish LJ, Ratcliff R, Bilton D, Lane DJ, Littlewood J, Webb M, Middleton PG, Colledge WH, Cuthbert AW, Evans MJ, Higgins CF, Hyde SC (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:199–209

    Article  PubMed  CAS  Google Scholar 

  • Godbey WT, Mikos AG (2001) Recent progress in gene delivery using non-viral transfer complexes. J Control Release 72:115–125

    Article  PubMed  CAS  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45:268–275

    Article  PubMed  CAS  Google Scholar 

  • Gordon EM, Chen ZH, Liu L, Whitley M, Wei D, Groshen S, Hinton DR, Anderson WF, Beart RW Jr, Hall FL (2001) Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum Gene Ther 12:193–204

    Article  PubMed  CAS  Google Scholar 

  • Gordon EM, Chan MT, Geraldino N, Lopez FF, Cornelio GH, Lorenzo CC III, Levy JP, Reed RA, Liu L, Hall FL (2007) Le morte du tumour: histological features of tumor destruction in chemo-resistant cancers following intravenous infusions of pathotropic nanoparticles bearing therapeutic genes. Int J Oncol 30:1297–1307

    PubMed  CAS  Google Scholar 

  • Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45:971–979

    Article  PubMed  CAS  Google Scholar 

  • Haensler J (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4:372

    Article  PubMed  CAS  Google Scholar 

  • Herweijer H, Wolff JA (2007) Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther 14:99–107

    PubMed  CAS  Google Scholar 

  • Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Hung MC, Wagner E (2005) Nonviral vectors for gene therapy. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  PubMed  CAS  Google Scholar 

  • Kelly TJ (1984) Adenovirus DNA replication. In: Ginsberg HS (ed) The adenoviruses, vol 1. Plenum, New York, pp 271–308

    Chapter  Google Scholar 

  • Kennedy MA, Parks RJ (2009) Adenovirus virion stability and the viral genome: size matters. Mol Ther 17:1664–1666

    Article  PubMed  CAS  Google Scholar 

  • Kim T-H, Jiang H-L, Jere D, Park I-K, Cho M-H, Nah J-W, Choi Y-J, Akaike T, Cho C-S (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32:726–753

    Article  CAS  Google Scholar 

  • Kingston HM (1989) ABC of clinical genetics. Gene structure and function. BMJ 298:1629–1631

    Article  PubMed  CAS  Google Scholar 

  • Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (2001) Fundamental virology. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Koltover I, Salditt T, Radler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281:78–81

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Menninger JC, Ward DC, Berns KI (1991) Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 10:831–834

    Article  PubMed  CAS  Google Scholar 

  • Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR Jr (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA 93:4897–4902

    Article  PubMed  CAS  Google Scholar 

  • Lamarque G, Chaussard G, Domard A (2007) Thermodynamic aspects of the heterogeneous deacetylation of â-chitin: reaction mechanisms. Biomacromolecules 8:1942–1950

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Lim YB, Choi JS, Lee Y, Kim TI, Kim HJ, Yoon JK, Kim K, Park JS (2003) Polyplexes assembled with internally quaternised PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug Chem 14:1214–1221

    Article  PubMed  CAS  Google Scholar 

  • Lungwitz U, Breunig M, Blunk T, Göpferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60:247–266

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Fan H, Yoshikai Y (2008) Oncogenesis by retroviruses: old and new paradigms. Rev Med Virol 18:387–405

    Article  PubMed  CAS  Google Scholar 

  • Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I- 125-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148

    Article  PubMed  CAS  Google Scholar 

  • Manome Y, Nakamura M, Ohno T, Furuhata H (2000) Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 11:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10:406–411

    Article  PubMed  CAS  Google Scholar 

  • Miller DL, Pislaru SV, Greenleaf JE (2002) Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 27:115–134

    Article  PubMed  CAS  Google Scholar 

  • Murphy SL, High KA (2008) Gene therapy for haemophilia. Br J Haematol 140:479–487

    Article  PubMed  CAS  Google Scholar 

  • Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E (1999) PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 6:595–605

    Article  PubMed  CAS  Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7:E61–E77

    Article  PubMed  CAS  Google Scholar 

  • Peng Z (2005) Current status of Gendicine in China: recombinant Ad-p53 agent for treatment of cancers. Hum Gene Ther 16:1016–1027

    Article  PubMed  CAS  Google Scholar 

  • Peng SF, Yang MJ, Su CJ, Chen HL, Lee PW, Wei MC, Sung HW (2009) Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials 30:1797–1808

    Article  PubMed  CAS  Google Scholar 

  • Persons DA (2010) Lentiviral vector gene therapy: effective and safe? Mol Ther 18:861–862

    Article  PubMed  CAS  Google Scholar 

  • Pesole G (2008) What is a gene? An updated operational definition. Gene 417:1–4

    Article  PubMed  CAS  Google Scholar 

  • Porteous DJ, Dorin JR, McLachlan G, DavidsonSmith H, Davidson H, Stevenson BJ, Carothers AD, Wallace WAH, Moralee S, Hoenes C, Kallmeyer G, Michaelis U, Naujoks K, Ho LP, Samways JM, Imrie M, Greening AP, Innes JA (1997) Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Radler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814

    Article  PubMed  CAS  Google Scholar 

  • Reitan NK, Maurstad G, de Lange Davies C, Strand SP (2009) Characterizing DNA condensation by structurally different chitosans of variable gene transfer efficacy. Biomacromolecules 10:1508–1515

    Article  PubMed  CAS  Google Scholar 

  • Rosenecker J, Schmalix WA, Schindelhauer D, Plank C, Reinhardt D (1998) Towards gene therapy of cystic fibrosis. Eur J Med Res 3:149–156

    PubMed  CAS  Google Scholar 

  • Ross CJ, Twisk J, Meulenberg JM, Liu G, van den Oever K, Moraal E, Hermens WT, Rip J, Kastelein JJ, Kuivenhoven JA, Hayden MR (2004) Long-term correction of murine lipoprotein lipase deficiency with AAV1-mediated gene transfer of the naturally occurring LPL(S447X) beneficial mutation. Hum Gene Ther 15:906–919

    PubMed  CAS  Google Scholar 

  • Schatzlein AG, Zinselmeyer BH, Elouzi A, Dufes C, Chim YTA, Roberts CJ, Davies MC, Munro A, Gray AI, Uchegbu IF (2005) Preferential liver gene expression with polypropylenimine dendrimers. J Control Release 101:247–258

    Article  PubMed  CAS  Google Scholar 

  • Smith L (2002) Gene therapy in the post-Gelsinger era. JONAS Healthc Law Ethics Regul 4:104

    Article  PubMed  Google Scholar 

  • Somiari S, Glasspool-Malone J, Drabick JJ, Gilbert RA, Heller R, Jaroszeski MJ, Malone RW (2000) Theory and in vivo application of electroporative gene delivery. Mol Ther 2:178–187

    Article  PubMed  CAS  Google Scholar 

  • Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, Schmidt M, Kramer A, Schwable J, Glimm H, Koehl U, Preiss C, Ball C, Martin H, Gohring G, Schwarzwaelder K, Hofmann WK, Karakaya K, Tchatchou S, Yang R, Reinecke P, Kuhlcke K, Schlegelberger B, Thrasher AJ, Hoelzer D, Seger R, von Kalle C, Grez M (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16:198–204

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev Yu A (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhang N (2010) Cationic polymer optimization for efficient gene delivery. Mini Rev Med Chem 10:108–125

    Article  PubMed  CAS  Google Scholar 

  • Touchefeu Y, Harrington KJ, Galmiche JP, Vassaux G (2010) Review article: gene therapy, recent developments and future prospects in gastrointestinal oncology. Aliment Pharmacol Ther 32:953–968

    Article  PubMed  CAS  Google Scholar 

  • Uchegbu IF, Siew A (2013) Nanomedicines and nanodiagnostics come of age. J Pharm Sci 102:305–310

    Article  PubMed  CAS  Google Scholar 

  • Uchegbu IF, Sadiq L, Pardakhty A, El-Hammadi M, Gray AI, Tetley L, Wang W, Zinselmeyer BH, Schatzlein AG (2004) Gene transfer with three amphiphilic glycol chitosans—the degree of polymerisation is the main controller of transfection efficiency. J Drug Target 12:527–539

    Article  PubMed  CAS  Google Scholar 

  • Verma IM, Somia N (1997) Gene therapy—promises, problems and prospects. Nature 389:239–242

    Article  PubMed  CAS  Google Scholar 

  • Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    Article  PubMed  CAS  Google Scholar 

  • Ward CM, Read ML, Seymour LW (2001) Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 97:2221–2229

    Article  PubMed  CAS  Google Scholar 

  • Weatherall DJ (1995) Scope and limitations of gene therapy. Br Med Bull 51:1–11

    PubMed  CAS  Google Scholar 

  • Weiss YG, Tazelaar J, Gehan BA, Bouwman A, Christofidou-Solomidou M, Yu QC, Raj N, Deutschman CS (2001) Adenoviral vector transfection into the pulmonary epithelium after cecal ligation and puncture in rats. Anesthesiology 95:974–982

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GW, Lowenstein PR (1994) Introduction to gene transfer: viral vectors. Gene Ther 1(Suppl 1):S1–S3

    PubMed  CAS  Google Scholar 

  • Wilmott RW, Whitsett JA, Trapnell B, Wert S, Baughman R, Cuppoletti J, Tolstohev P (1994) Gene-therapy for cystic-fibrosis utilizing a replication deficient recombinant adenovirus vector to deliver the human cystic-fibrosis transmembrane conductance regulator cDNA to the airways—a phase-I study. Hum Gene Ther 5:1019–1057

    Article  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  PubMed  CAS  Google Scholar 

  • Yang PL, Althage A, Chung J, Chisari FV (2002) Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci USA 99:13825–13830

    Article  PubMed  CAS  Google Scholar 

  • Yang XZ, Dou S, Wang YC, Long HY, Xiong MH, Mao CQ, Yao YD, Wang J (2012) Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano 6:4955–4965

    Article  PubMed  CAS  Google Scholar 

  • Yi Y, Noh MJ, Lee KH (2011) Current advances in retroviral gene therapy. Curr Gene Ther 11:218–228

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zhang WW (1999) Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 6:113–138

    Article  PubMed  CAS  Google Scholar 

  • Zinselmeyer BH, Mackay SP, Schatzlein AG, Uchegbu IF (2002) The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res 19:960–967

    Article  PubMed  CAS  Google Scholar 

  • Zuidam NJ, Barenholz Y (1998) Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta 1368:115–128

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ijeoma F. Uchegbu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iemsam-Arng, J., Kong, X., Schätzlein, A.G., Uchegbu, I.F. (2013). Gene and Ribonucleic Acid Therapy. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_18

Download citation

Publish with us

Policies and ethics