Agger EM, Cassidy JP, Brady J, Korsholm KS, Vingsbo-Lundberg C, Andersen P (2008) Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccine; immunity, pathology and protection. Immunology 124:175–185
PubMed
CrossRef
CAS
Google Scholar
Allison A, Gregoriadis G (1974) Liposomes as immunological adjuvants. Nature 252:252
PubMed
CrossRef
CAS
Google Scholar
Almeida J, Edwards DC, Brand C, Heath T (1975) Formulation of virosomes from influenza subunits and liposomes. Lancet 306(7941):899–901
CrossRef
Google Scholar
Andersen P (1994) Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun 62:2536–2544
PubMed
CAS
Google Scholar
Arvin A, Greenberg H (2006) New viral vaccines. Virology 344:240–249
PubMed
CrossRef
CAS
Google Scholar
Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A (1985) The preparation and properties of niosomes—non-ionic surfactant vesicles. J Pharm Pharmacol 37(12):863–868
PubMed
CrossRef
CAS
Google Scholar
Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5
PubMed
CAS
Google Scholar
Bayindir ZS and Yuksel N (2010) Charcterisation of niosomes prepared with various non-ionic surfactants for paclitaxel oral delivery. J Pharm Sci 99:2049–2060
Google Scholar
Bingham CO (2008) Basic immunology for the non-immunologist: from pathophysiology to therapeutics. Available from http://www.medscape.com/viewarticle/579121_3. Accessed 31 Oct 2012
Black S, Cioppa GD, Malfroot A, Nacci P, Nicolay U, Pellegrini M, Sokal E, Vertruyen A (2010) Safety of MF59-adjuvanted versus non-adjuvanted influenza vaccines in children and adolescents: an integrated analysis. Vaccine 28(45):7331–7336
PubMed
CrossRef
CAS
Google Scholar
Boyaka PN, McGhee JR (2001) Cytokines as adjuvants for the induction of mucosal immunity. Adv Drug Deliv Rev 51:71–79
Google Scholar
Bramwell VW, Perrie Y (2005) The rational design of vaccines. Drug Discov Today 10(22):1527–1534
PubMed
CrossRef
CAS
Google Scholar
Brandt L, Elhay M, Rosenkrands I, Lindblad E, Andersen P (2000) ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun 68:791–795
PubMed
CrossRef
CAS
Google Scholar
Brewer JM (2006) (How) do aluminium adjuvants work? Immunol Lett 102:10–15
PubMed
CrossRef
CAS
Google Scholar
Brewer JM, Alexander J (1992) The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology 75(4):570–575
PubMed
CAS
Google Scholar
Brunei F, Darbouret A, Ronco J (1999) Cationic lipid DC-Chol induces an improved and balanced immunity able to overcome the unresponsiveness to the hepatitis B vaccine. Vaccine 17:2192–2203
CrossRef
Google Scholar
Carlson B, Jansson Å, Larsson A, Bucht A, Lorentzen J (2000) The endogenous adjuvant squalene can induce a chronic T-cell-mediated arthritis in rats. Am J Pathol 156:2057–2065
PubMed
CrossRef
CAS
Google Scholar
Chang JCC, Diveley JP, Savary JR, Jensen FC (1998) Adjuvant activity of incomplete Freund’s adjuvant. Adv Drug Deliv Rev 32:173–186
PubMed
CrossRef
CAS
Google Scholar
Christensen D, Agger E, Andreasen L, Kirby D, Andersen P, Perrie Y (2009) Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J Liposome Res 19:2–11
PubMed
CrossRef
CAS
Google Scholar
Christensen C, Henriksen-Lacey M, Kamath AT, Lindenstrøm T, Korsholm KS, Christensen JP, Rochat A, Lambert PH, Andersen P, Siegrist CA, Perrie Y, Agger EM (2012) Vaccine adjuvants based on saturated quaternary ammonium lipids have different in vivo distribution kinetics and display distinct T cell-inducing capacity compared to their unsaturated analogues. J Control Release 160(3):468–476
PubMed
CrossRef
CAS
Google Scholar
Clements CJ, Griffiths E (2002) The global impact of vaccines containing aluminium adjuvants. Vaccine 20:S24–S33
PubMed
CrossRef
Google Scholar
Conacher M, Alexander J, Brewer JM (2001) Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 19(20–22):2965–2974
PubMed
CrossRef
CAS
Google Scholar
Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, Agger E, Andersen P (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6 dibehenate) a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718:22–31
PubMed
CrossRef
CAS
Google Scholar
Davis D, Gregoriadis G (1987) Liposomes as adjuvants with immunopurified tetanus toxoid: influence of liposomal characteristics. Immunology 61:229–234
PubMed
CAS
Google Scholar
Dockrell DH, Kinghorn GR (2001) Imiquimod and resiquimod as novel immunomodulators. J Anti Chemo 48:751–755
Google Scholar
Donatoa SD, Granoff D, Minutello M, Lecchi G, Faccini M, Agnello M, Senatore F, Verweij P, Fritzell B, Podda A (1999) Safety and immunogenicity of MF59-adjuvanted inuenza vaccine in the elderly. Vaccine 17:3094–3101
CrossRef
Google Scholar
Egan MA, Israel ZR (2002) The use of cytokines and chemokines as genetic adjuvants for plasmid DNA vaccines. Clin Appl Immunol Rev 2:255–287
CrossRef
CAS
Google Scholar
Eldridge SR, Tilbury LF, Goldsworthy TL, Butterworth BE (1990) Measurement of chemically induced cell proliferation in rodent liver and kidney: a comparison of 5-bromo-2’-deoxyuridine and [3H]thymidine administered by injection or osmotic pump. Carcinogenesis 11(12):2245–2251
Google Scholar
Esposito E, Sebben S, Cortesi R, Menegatti E, Nastruzzi C (1999) Preparation and characterization of cationic microspheres for gene delivery. Int J Pharm 189:29–41
PubMed
CrossRef
CAS
Google Scholar
Freund J, Thomson KJ, Hough HB, Sommer HE, Pisani TM (1948) Antibody formation and sensitization with the aid of adjuvants. J Immunol 60:383–398
PubMed
CAS
Google Scholar
Friede M (2009) Developing adjuvants for public use: a long and treacherous road. In: Global Vaccine Research Forum, Bamako, Mali
Google Scholar
Gall D (1966) The adjuvant activity of aliphatic nitrogenous bases. Immunology 11:369–386
PubMed
CAS
Google Scholar
Glenny AT, Pope CG, Waddington H, Wallace U (1926) Immunological notes XXIII. The antigenic value of toxoid precipitated by potassium alum. The Journal of Pathology and Bacteriology 29:38–39
Google Scholar
Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Immunology. W. H. Freeman and Company, New York
Google Scholar
Gross C, Sepkowitz K (1998) The myth of the medical breakthrough: smallpox, vaccination, and Jenner reconsidered. Int J Infect Dis 3:54–60
PubMed
CrossRef
CAS
Google Scholar
Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, Chatterji DP, Vyas SP (2005) Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 293(1–2):73–82
PubMed
CrossRef
CAS
Google Scholar
Heath AW, Playfair JHL (1992) Cytokines as immunological adjuvants. Vaccine 10:427–434
PubMed
CrossRef
CAS
Google Scholar
Henriksen-Lacey, M., Christensen, D., Bramwell, V.W., Lindenstrøm, T., Agger, E.M., Andersen, P., Perrie, Y (2010) Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. Journal of Controlled Release 145:102–108
Google Scholar
Henriksen-Lacey, M., Christensen, D., Bramwell, V.W., Lindenstrøm, T., Agger, E.M., Andersen, P., Perrie, Y (2011) Comparison of the depot effect and immunogenicity of liposomes based on DDA, DC-Chol and DOTAP: Prolonged liposome retention mediates stronger Th1 responses. Molecular Pharmaceutics 8(1):153–161
Google Scholar
Hilgers L, Snippe H, Jansze M, Willers JM (1985) Combination of two synthetic adjuvants: synergistic effects of a surfactant and a polyanion on the humoral response. Cell Immunol 92:203–209
PubMed
CrossRef
CAS
Google Scholar
Hilleman MR (2000) Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine 18:1436–1447
PubMed
CrossRef
CAS
Google Scholar
Holten-Andersen L, Doherty T, Korsholm K, Andersen P (2004) Combination of the cationic surfactant dimethyldioctadecylammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun 72:1608–1617
PubMed
CrossRef
CAS
Google Scholar
Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13:11–16
PubMed
CrossRef
CAS
Google Scholar
Kahl L, Scott C, Lelchuk R, Gregoriadis G, Liew F (1989) Vaccination against murine cutaneous leishmaniasis by using Leishmania major antigen/liposomes. Optimization and assessment of the requirement for intravenous immunization. J Immunol 142:4441–4449
PubMed
CAS
Google Scholar
Kaur R, Bramwell VW, Kirby DJ, Perrie Y (2012a) Pegylation of DDA: TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses. J Control Release 158(3):72–77
PubMed
CrossRef
CAS
Google Scholar
Kaur R, Bramwell VW, Kirby DJ, Perrie Y (2012b)Manipulation of the surface pegylation in combination with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and the rate and type of T cell response. J Control Release 164(3):331–337
Google Scholar
Kennedy RB, Ovsyannikova I, Poland GA (2009) Smallpox vaccines for biodefense. Vaccine 27:D73–D79
PubMed
CrossRef
CAS
Google Scholar
Klinguer C, Beck A, De-Lys P, Bussat M, Blaecke A, Derouet F, Bonnefoy J, Nguyen T, Corvaia N, Velin D (2001) Lipophilic quaternary ammonium salt acts as a mucosal adjuvant when co-administered by the nasal route with vaccine antigens. Vaccine 19:4236–4244
PubMed
CrossRef
CAS
Google Scholar
Korsholm K, Agger E, Foged C, Christensen D, Dietrich J, Andersen C-S, Geisler C, Andersen P (2007) The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 121:216–226
PubMed
CrossRef
CAS
Google Scholar
Lendemans DG, Egert AM, Hook S, Rades T (2007) Cage-like complexes formed by DOTAP, Quil-A and cholesterol. Int J Pharm 332:192–195
PubMed
CrossRef
CAS
Google Scholar
Lindblad EB (2000) Freund’s adjuvants. In: O’Hagan DT (ed) Vaccine adjuvants: preparation methods and research protocols. Humana Press, Totowa, NJ
Google Scholar
Lindblad E, Elhay M, Silva R, Appelberg R, Andersen P (1997) Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infect Immun 65:623–629
PubMed
CAS
Google Scholar
Lindenstrom T, Agger E, Korsholm K, Darrah P, Aagaard C, Seder R (2009) Tuberculosis subunit vaccination provides long-term protective immunity characterised by multifunctional CD4 memory T cells. J Immunol 182:8047–8055
PubMed
CrossRef
CAS
Google Scholar
Mann JFS, Ferro VA, Mullen AB, Tetley L, Mullen M, Carter KC, Alexander J, Stimson WH (2004) Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 22(19):2425–2429
PubMed
CrossRef
CAS
Google Scholar
Mann JFS, Scales HE, Shakir E, Alexander J, Carter KC, Mullen AB, Ferro VA (2006) Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 38(2):90–95
PubMed
CrossRef
CAS
Google Scholar
Mariathasan S (2007) ASC, Ipaf and Cryopyrin/Nalp3: bona fide intracellular adapters of the caspase-1 inflammasome. Microbes Infect 9:664–671
PubMed
CrossRef
CAS
Google Scholar
Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293
PubMed
CrossRef
CAS
Google Scholar
Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10:417–426
PubMed
CrossRef
CAS
Google Scholar
Matzinger P (1994) Tolerance, danger and the extended family. Ann Rev of Immun 12:991–1045
Google Scholar
Mbow ML, Gregorio ED, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22:411–416
PubMed
CrossRef
CAS
Google Scholar
Mohanan M, Henriksen-Lacey M, Slütter B, Jiskoot W, Bouwstra J, Perrie Y, Kündig TM, Gander B, Johansen P (2010) Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 147(3):342–349
PubMed
CrossRef
CAS
Google Scholar
Monie TP, Bryant CE, Gay NJ (2009) Activating immunity: lessons from the TLRs and NLRs. Trends Biochem Sci 34:553–561
PubMed
CrossRef
CAS
Google Scholar
Morefield GL, Jiang D, Romero-Mendez IZ, Geahlen RL, HogenEsch H, Hem SL (2005) Effect of phosphorylation of ovalbumin on adsorption by aluminium-containing adjuvants and elution upon exposure to interstitial fluid. Vaccine 23:1502–1506
PubMed
CrossRef
CAS
Google Scholar
Morein B, Helenius A, Simons K, Pettersson R, Kaariainen L, Schirrmacher V (1978) Effective subunit vaccines against an enveloped animal virus. Nature 276:715–718
PubMed
CrossRef
CAS
Google Scholar
Mosca F, Tritto E, Muzzi A, Monaci E, Bagnoli F, Iavarone C, O’Hagan D, Rappuoli R, Gregorio ED (2008) Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci USA 105:10501–10506
PubMed
CrossRef
CAS
Google Scholar
Mowat AM, Maloy KJ, Donachie AM (1993) Immue-stimuating complexes as adjuvants for indicing local and systemic immunity after oral immunisation with protein antigens. Immunology 80(4):527–534
PubMed
CAS
Google Scholar
Murata J, Kitamoto T, Ohya Y, Ouchi T (1997) Effect of dimerization of the Dglucose analogue of muramyl dipeptide on stimulation of macrophage-like cells. Carbohydr Res 297:127–133
PubMed
CrossRef
CAS
Google Scholar
Myschik J, Lendemans DG, McBurney WT, Demana PH, Hook S, Rades T (2006) On the preparation, microscopic investigation and application of ISCOMs. Micron 37:724–734
PubMed
CrossRef
CAS
Google Scholar
O’Hagan DT, Gregorio ED (2009) The path to a successful vaccine adjuvant—‘the long and winding road’. Drug Discov Today 14:541–551
PubMed
CrossRef
Google Scholar
Obrenovic M, Perrie Y, Gregoriadis G (1998) Plasmid DNA entrapment into niosomes: characterisation studies. J Pharm Pharmacol 50:150
CrossRef
Google Scholar
Olds GR, Chedid L, Lederer E, Mahmoud AA (1980) Induction of resistance to schistosoma mansoni by natural cord factor and synthetic lower homologues. J Infect Dis 141:473–478
Google Scholar
Olsen A, Pinxteren L, Okkels L, Rasmussen P, Andersen P (2001) Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Infect Immun 69:2773–2778
CrossRef
CAS
Google Scholar
Parham P (2009) The immune system. Taylor & Francis, Oxford
Google Scholar
Perrie Y, Frederik P, Gregoriadis G (2001) Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine 19:3301–3310
PubMed
CrossRef
CAS
Google Scholar
Perrie Y, Obrenovic M, McCarthy D, Gregoriadis G (2002) Liposome-mediated DNA vaccination via the oral route. J Liposome Res 12:185–197
PubMed
CrossRef
CAS
Google Scholar
Perrie Y, McNeil S, Vangala A (2003) Liposome-mediated DNA immunisation via the subcutaneous route. J Drug Target 11:555–563
PubMed
CrossRef
CAS
Google Scholar
Perrie Y, Barralet JE, McNeil S, Vangala AK (2004) Liposome and niosome mediated DNA vaccination via the subcutaneous route. Int J Pharm 284:31–41
PubMed
CrossRef
CAS
Google Scholar
Pimm MV, Gribben SJ, Baldwin RW (1979) Viability counts on BCG vaccines for tumour immunotherapy; divergent effects on different growth media. Eur J Cancer 15:1471–1474
Google Scholar
Ramon G (1925) Sur l’augmentation anormale de l’antitoxine chez les chevaux producteurs de serum antidiphtierique. Bulletin de la Societe du Centres Medicaux et Veterinaire 101:227–234
Google Scholar
Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 18(1):21–25
Google Scholar
Rosenkrands I, Agger E, Olsen A, Korsholm K, Andersen C, Jensen K, Andersen P (2005) Cationic liposomes containing mycobacterial lipids—a new powerful Th1 adjuvant system. Infect Immun 73:5817–5826
PubMed
CrossRef
CAS
Google Scholar
Schijns VEJC (2000) Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol 12:456–463
PubMed
CrossRef
CAS
Google Scholar
Schubert R, Jaroni H, Schoelmerich J, Schmidt KH (1983) Studies on the mechanism of bile salt-induced liposomal membrane damage. Digestion 28(3):181–190
PubMed
CrossRef
CAS
Google Scholar
Shi Y, Zheng W, Rock KL (2000) Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc Natl Acad Sci USA 97:14590–14595
PubMed
CrossRef
CAS
Google Scholar
Shukla A, Katare OP, Singh B, Vyas SP (2010) M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int J Pharm 385(1–2):47–52
PubMed
CrossRef
CAS
Google Scholar
Smith Korsholm K, Agger E, Foged C, Christensen D, Dietrich J, Andersen C, Geisler C, Andersen P (2007) The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 121:216–226
CrossRef
Google Scholar
Snippe H, de Reuver M, Beunder J, van der Meer J, van Wichen D, Willers J (1982) Delayed-type hypersensitivity in rabbits. Comparison of the adjuvants dimethyl dioctadecyl ammonium bromide and Freund’s complete adjuvant. Int Arch Allergy Appl Immunol 67:139–144
PubMed
CrossRef
CAS
Google Scholar
Stano A, Nembrini C, Swartz MA, Hubbell JA, Simeoni E (2012) Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine. pii: S0264-410X(12)01496-X. doi: 10.1016/j.vaccine.2012.10.050. Accessed 25 Oct 2012
Sudhakar P, Subramani P (2005) Mechanisms of bacterial pathogenesis and targets for vaccine design. Available from http://www.jyi.org/research/re.php?id=610. Accessed 31 Oct 2012
Thoelen S, Van Damme P, Mathei C, Leroux-Roels G, Desombere L, Safary A, Vandepapeliere P, Slaoui M, Ehues A (1998) Safety and immunogenicity of a hepatitis B vaccine formulated with a novel adjuvant system. Vaccine 16:708–714
PubMed
CrossRef
CAS
Google Scholar
Vangala A, Kirby D, Rosenkrands I, Agger EM, Andersen P, Perrie Y (2006) A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: characterisation, environmental scanning electron microscopy and immunisation studies in mice. J Pharm Pharmacol 58(6):787–799
PubMed
CrossRef
CAS
Google Scholar
Vogel F (1995) Immunologic adjuvants for modern vaccine formulations. Ann N Y Acad Sci 754:153–160
PubMed
CrossRef
CAS
Google Scholar
Yamagami H, Matsumoto T, Fujiwara N, Arakawa T, Kaneda K, Yano I, Kobayashi K (2001) Trehalose 6,6’-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun 69(2):810–815
PubMed
CrossRef
CAS
Google Scholar