Skip to main content

Cancer Chemotherapy

  • Chapter
  • First Online:
Fundamentals of Pharmaceutical Nanoscience

Abstract

The enhanced permeability and retention (EPR) effect is the first essential step for selective delivery of macromolecular drugs to tumor tissues. The EPR effect is based on the aberrant architecture of tumor blood vessels and the impaired lymphatic drainage system in tumor tissue. This effect is facilitated by overproduction of multiple vascular mediators such as bradykinin, nitric oxide, prostaglandins, vascular endothelial growth factor (VEGF), and other cytokines in tumor tissue, which may also affect surrounding normal tissues. The biocompatibility, molecular size, and surface charge of macromolecular drugs, i.e., nanomedicines, are critical determinants of tumor-targeted drug delivery based on the EPR effect. However, ineffective treatment can result from the heterogeneity of the EPR effect in tumor tissues, which impedes drug delivery to some tumors. In this chapter, we also discuss how to overcome this problem by using specific therapeutic methods, such as angiotensin (AT) II-induced high blood pressure, angiotensin-converting enzyme inhibitors, nitric oxide-releasing agents, tumor necrosis factor-α, transforming growth factor-β, and heme oxygenase-1 inducer, some of which were demonstrated to be effective in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

AT-II:

Angiotensin II

BSA:

Bovine serum albumin

CO:

Carbon monoxide

COX:

Cyclooxygenase

CT:

Computer topography

EPR:

Enhanced permeability and retention

HIF-1α:

Hypoxia-inducible factor 1 alpha

HO-1:

Heme oxygenase-1

HPMA:

Hydroxypropyl methacrylamide

ISDN:

Isosorbide dinitrate

IgG:

Immunoglobulin G

NADPH:

Nicotinamide adenine dinucleotide phosphate

NCS:

Neocarzinostatin

NG:

Nitroglycerin

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PEG:

Polyethylene glycol

SCID:

Severe combined immune deficiency

SEM:

Scanning electron microscopy

SERCA:

Sarcoplasmic/endoplasmic reticulum ATPase

SMA:

Styrene maleic acid

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

References

  • Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60:79–127

    Article  PubMed  CAS  Google Scholar 

  • Akaike T, Ando M, Oda T et al (1990) Dependence on O2 generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest 85:739–745

    Article  PubMed  CAS  Google Scholar 

  • Akaike T, Noguchi Y, Ijiri S et al (1996) Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 93:2448–2453

    Article  PubMed  CAS  Google Scholar 

  • Akaike T, Okamoto S, Sawa T et al (2003) 8-Nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci USA 100:685–690

    Article  PubMed  CAS  Google Scholar 

  • Blum MS, Toninelli E, Anderson JM et al (1997) Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 273:H286–H294

    PubMed  CAS  Google Scholar 

  • Cohen RA, Adachi T (2006) Nitric-oxide-induced vasodilatation: regulation by physiologic S-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 16:109–114

    Article  PubMed  CAS  Google Scholar 

  • Daruwalla J, Nikfarjam M, Greish K et al (2010) In vitro and in vivo evaluation of tumor targeting styrene-maleic acid copolymer-pirarubicin micelles: survival improvement and inhibition of liver metastases. Cancer Sci 101:1866–1874

    Article  PubMed  CAS  Google Scholar 

  • Dash PR, Read ML, Barrett LB, Wolfert MA, Seymour LW (1999) Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther 6:643–650

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Abuchowski A, Park YK, Davis FF (1981) Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin Exp Immunol 46:649–652

    PubMed  CAS  Google Scholar 

  • de Wilt JH, ten Hagen TL, de Boeck G et al (2000) Tumour necrosis factor alpha increases melphalan concentration in tumour tissue after isolated limb perfusion. Br J Cancer 82:1000–1003

    Article  PubMed  Google Scholar 

  • Doi K, Akaike T, Horie H et al (1996) Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 77:1598–1604

    PubMed  CAS  Google Scholar 

  • Doi K, Alaike T, Fujii S et al (1999) Induction of haem oxygenase-1 by nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 80:1945–1954

    Article  PubMed  CAS  Google Scholar 

  • Editorial (2008) Welcome clinical leadership at NICE. Lancet 372:601

    Article  Google Scholar 

  • Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2002) Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 62:5443–5450

    PubMed  CAS  Google Scholar 

  • Fang J, Sawa T, Akaike T, Maeda H (2002) Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res 62:3138–3143

    PubMed  CAS  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Qin H, Nakamura H, Tsukigawa K, Shin T, Maeda H (2012) Carbon monoxide, generated by heme oxygenase-1, mediates the enhanced permeability and retention effect in solid tumors. Cancer Sci 103:535–541

    Article  PubMed  CAS  Google Scholar 

  • Fojo T, Grady C (2009) How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J Natl Cancer Inst 101:1044–1048

    Article  PubMed  Google Scholar 

  • Folli S, Pelegrin A, Chalandon Y et al (1993) Tumor-necrosis factor can enhance radio-antibody uptake in human colon carcinoma xenografts by increasing vascular permeability. Int J Cancer 53:829–836

    Article  PubMed  CAS  Google Scholar 

  • From the Press Release material in Sankei Shinbun (2012). New beptile therapy for pancreatic cancer, March 3

    Google Scholar 

  • Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H (2003) Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 42:1089–1105

    Article  PubMed  CAS  Google Scholar 

  • Hagen TL, Eggermont AM (2004) Tumor vascular therapy with TNF: critical review on animal models. Methods Mol Med 98:227–246

    PubMed  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  PubMed  CAS  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Todoroki T, Kato S et al (1994) Synthesis of the conjugate of superoxide dismutase with the copolymer of divinylether and maleic anhydride retaining enzymatic activity. J Control Release 28:203–209

    Article  CAS  Google Scholar 

  • Hoffman RM (2009) Tumor-targeting amino acid auxotrophic Salmonella typhimurium. Amino Acids 37:509–521

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Suzuki M, Tanda S (1991) Fluctuations in tumor blood flow under normotension and the effect of angiotensin II-induced hypertension. Cancer Sci 82:1309–1316

    Article  CAS  Google Scholar 

  • Iwai K, Maeda H, Konno T (1984) Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res 44:2115–2121

    PubMed  CAS  Google Scholar 

  • Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814s–819s

    PubMed  CAS  Google Scholar 

  • Janssens MY, Van den Berge DL, Verovski VN et al (1998) Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells. Cancer Res 58:5646–5648

    PubMed  CAS  Google Scholar 

  • Jordan BF, Misson P, Demeure R, Baudelet C, Beghein N, Gallez B (2000) Changes in tumor oxygenation/perfusion induced by the NO donor, isosorbide dinitrate, in comparison with carbogen: monitoring by EPR and MRI. Int J Radiat Oncol Biol Phys 48:565–570

    Article  PubMed  CAS  Google Scholar 

  • Kamata R, Yamamoto T, Matsumoto K, Maeda H (1985) A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs. Infect Immun 48:747–753

    PubMed  CAS  Google Scholar 

  • Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci USA 104:3460–3465

    Article  PubMed  CAS  Google Scholar 

  • Kimura NT, Taniguchi S, Aoki K, Baba T (1980) Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res 40:2061–2068

    PubMed  CAS  Google Scholar 

  • Kimura M, Matsumura Y, Miyauchi Y, Maeda H (1988) A new tactic for the treatment of jaundice: an injectable polymer-conjugated bilirubin oxidase. Proc Soc Exp Biol Med 188:364–369

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Matsumura Y, Konno T, Miyauchi Y, Maeda H (1990) Enzymatic removal of bilirubin toxicity by bilirubin oxidase in vitro and excretion of degradation products in vivo. Proc Soc Exp Biol Med 195:64–69

    Article  PubMed  CAS  Google Scholar 

  • Kohmoto J, Nakao A, Kaizu T et al (2006) Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery 140:179–185

    Article  PubMed  Google Scholar 

  • Kojima Y, Haruta A, Imai T, Otagiri M, Maeda H (1993) Conjugation of Cu, Zn-superoxide dismutase with succinylated gelatin: pharmacological activity and cell-lubricating function. Bioconjug Chem 4:490–498

    Article  PubMed  CAS  Google Scholar 

  • Konerding MA, Miodonski AJ, Lametschwandtner A (1995) Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc 9:1233–1243; discussion 1243–1244

    Google Scholar 

  • Konno T, Maeda H, Iwai K et al (1983) Effect of arterial administration of high-molecular-weight anticancer agent SMANCS with lipid lymphographic agent on hepatoma: a preliminary report. Eur J Cancer Clin Oncol 19:1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Konno T, Maeda H, Iwai K et al (1984) Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium. Cancer 54:2367–2374

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara H, Kariu T, Fang J, Maeda H (2009) Generation of drug-resistant mutants of Helicobacter pylori in the presence of peroxynitrite, a derivative of nitric oxide, at pathophysiological concentration. Microbiol Immunol 53:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kwoh DY, Coffin CC, Lollo CP et al (1999) Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta 1444:171–190

    Article  PubMed  CAS  Google Scholar 

  • Lampugnani MG, Resnati M, Raiteri M et al (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522

    Article  PubMed  CAS  Google Scholar 

  • Li CJ, Miyamoto Y, Kojima Y, Maeda H (1993) Augmentation of tumour delivery of macromolecular drugs with reduced bone marrow delivery by elevating blood pressure. Br J Cancer 67:975–980

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Shan S, Huang Q et al (2000) Initial stage of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92:143–147

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TM (1989) Cyclic GMP and mechanisms of vasodilation. Pharmacol Ther 41:479–502

    Article  PubMed  CAS  Google Scholar 

  • Maeda H (2001a) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  PubMed  CAS  Google Scholar 

  • Maeda H (2001b) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185

    Article  PubMed  CAS  Google Scholar 

  • Maeda H (2010a) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21:797–802

    Article  PubMed  CAS  Google Scholar 

  • Maeda H (2010b) Nitroglycerin enhances vascular blood flow and drug delivery in hypoxic tumor tissues: analogy between angina pectoris and solid tumors and enhancement of the EPR effect. J Control Release 142:296–298

    Article  PubMed  CAS  Google Scholar 

  • Maeda H (2012a) Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc Jpn Acad Ser B 88:53–71

    Article  CAS  Google Scholar 

  • Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164:138–144

    Google Scholar 

  • Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6:193–210

    PubMed  CAS  Google Scholar 

  • Maeda H, Takeshita J, Kanamaru R (1979) A lipophilic derivative of neocarzinostatin. A polymer conjugation of an antitumor protein antibiotic. Int J Pept Protein Res 14:81–87

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Matsumura Y, Oda T, Sasamoto K (1986) Cancer selective macromolecular therapeusis; tailoring of an antitumor protein drug. In: Feeney RE, Whitaker JR (eds) Protein tailoring for food and medical uses. Marcel Dekker, New York

    Google Scholar 

  • Maeda H, Matsumura Y, Kato H (1988) Purification and identification of [hydroxyprolyl3]bradykinin in ascitic fluid from a patient with gastric cancer. J Biol Chem 263:16051–16054

    PubMed  CAS  Google Scholar 

  • Maeda H, Kimura I, Sasaki Y et al (1992) Toxicity of bilirubin and detoxification by PEG-bilirubin oxidase conjugate: a new tactic for treatment of jaundice. In: Harris JM (ed) Poly(ethylene glycol) chemistry: biotech biomed applications. Plenum Press, New York, pp 153–169

    Chapter  Google Scholar 

  • Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    Article  PubMed  CAS  Google Scholar 

  • Maki S, Konno T, Maeda H (1985) Image enhancement in computerized tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 56:751–757

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Yamamoto T, Kamata R, Maeda H (1984) Pathogenesis of serratial infection: activation of the Hageman factor-prekallikrein cascade by serratial protease. J Biochem 96:739–749

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Kimura M, Yamamoto T, Maeda H (1988) Involvement of the kinin-generating cascade in enhanced vascular permeability in tumor tissue. Jpn J Cancer Res 79:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Maruo K, Kimura M, Yamamoto T, Konno T, Maeda H (1991) Kinin-generating cascade in advanced cancer patients and in vitro study. Jpn J Cancer Res 82:732–741

    Article  PubMed  CAS  Google Scholar 

  • Mayer RJ (2009) Targeted therapy for advanced colorectal cancer—more is not always better. N Engl J Med 360:623–625

    Article  PubMed  CAS  Google Scholar 

  • Minowa T, Kawano K, Kuribayashi H et al (2009) Increase in tumour permeability following TGF-β type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI. Br J Cancer 101:1884–1890

    Article  PubMed  CAS  Google Scholar 

  • Nagamitsu A, Greish K, Maeda H (2009) Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jpn J Clin Oncol 39:756–766

    Article  PubMed  Google Scholar 

  • Nakao A, Neto JS, Kanno S et al (2005) Protection against ischemia/reperfusion injury in cardiac and renal transplantation with carbon monoxide, biliverdin and both. Am J Transplant 5:282–291

    Article  PubMed  CAS  Google Scholar 

  • Noguchi A, Takahashi T, Yamaguchi T et al (1992) Enhanced tumor localization of monoclonal antibody by treatment with kininase II inhibitor and angiotensin II. Jpn J Cancer Res 83:240–243

    Article  PubMed  CAS  Google Scholar 

  • Noguchi Y, Wu J, Duncan R et al (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89:307–314

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Akaike T, Hamamoto T et al (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244:974–976

    Article  PubMed  CAS  Google Scholar 

  • Ogino T, Inoue M, Ando Y, Awai M, Maeda H, Morino Y (1988) Chemical modification of superoxide dismutase. Extension of plasma half life of the enzyme through its reversible binding to the circulating albumin. Int J Pept Protein Res 32:153–159

    Article  PubMed  CAS  Google Scholar 

  • Papillon J, Dargent M, Chassard JL (1963) [Ultra-fluid lipiodol lymphography in cancerology (apropos of 62 cases)]. J Radiol Electrol Med Nucl 44:397–406

    PubMed  CAS  Google Scholar 

  • Riganti C, Miraglia E, Viarisio D et al (2005) Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 65:516–525

    PubMed  CAS  Google Scholar 

  • Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623

    Article  PubMed  CAS  Google Scholar 

  • Romer LH, McLean NV, Yan HC et al (1995) IFN-gamma and TNF-alpha induce redistribution of PECAM-1 (CD31) on human endothelial cells. J Immunol 154:6582–6592

    PubMed  CAS  Google Scholar 

  • Rutter DA, Wade HE (1971) The influence of the iso-electric point of L-asparaginase upon its persistence in the blood. Br J Exp Pathol 52:610–614

    PubMed  CAS  Google Scholar 

  • Sahoo SK, Sawa T, Fang J et al (2002) Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem 13:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Fang J, Maeda H (2009) Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci 100:2426–2430

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Carroll F, Illingworth S et al (2011) Tumour necrosis factor-alpha increases extravasation of virus particles into tumour tissue by activating the Rho A/Rho kinase pathway. J Control Release 156:381–389

    Article  PubMed  CAS  Google Scholar 

  • Seymour LW, Miyamoto Y, Maeda H et al (1995) Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur J Cancer 31A:766–770

    Article  PubMed  CAS  Google Scholar 

  • Sinha G (2008) Expensive cancer drugs with modest benefit ignite debate over solutions. J Natl Cancer Inst 100:1347–1349

    Article  PubMed  Google Scholar 

  • Sjöblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  • Sofuni A, Iijima H, Moriyasu F et al (2005) Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J Gastroenterol 40:518–525

    Article  PubMed  Google Scholar 

  • Suzuki M, Hori K, Abe I, Saito S, Sato H (1981) A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II. J Natl Cancer Inst 67:663–669

    PubMed  CAS  Google Scholar 

  • Suzuki M, Hori K, Abe I et al (1984) Functional characterization of the microcirculation in tumors. Cancer Metastasis Rev 3:115–126

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Cleary KR, Mai M et al (1996) Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clin Cancer Res 2:1679–1684

    PubMed  CAS  Google Scholar 

  • Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572

    Article  PubMed  CAS  Google Scholar 

  • van der Veen AH, de Wilt JH, Eggermont AM et al (2000) TNF-α augments intratumoural concentrations of doxorubicin in TNF-α-based isolated limb perfusion in rat sarcoma models and enhances anti-tumour effects. Br J Cancer 82:973–980

    Article  PubMed  Google Scholar 

  • van Nieuw Amerongen GP, Vermeer MA, Negre-Aminou P et al (2000) Simvastatin improves disturbed endothelial barrier function. Circulation 102:2803–2809

    Article  PubMed  Google Scholar 

  • Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Wood LD, Parsons W, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Akaike T, Maeda H (1998) Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res 58:159–165

    PubMed  CAS  Google Scholar 

  • Yasuda H, Nakayama K, Watanabe M et al (2006a) Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res 12:6748–6757

    Article  PubMed  CAS  Google Scholar 

  • Yasuda H, Yamaya M, Nakayama K et al (2006b) Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 24:688–694

    Article  PubMed  CAS  Google Scholar 

  • Yoshitake J, Akaike T, Akuta T et al (2004) Nitric oxide as an endogenous mutagen for Sendai virus without antiviral activity. J Virol 78:8709–8719

    Article  PubMed  CAS  Google Scholar 

  • Zhang JS, Liu F, Huang L (2005) Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Deliv Rev 57:689–698

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Yang M, Li XM et al (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 102:755–760

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Zhuang S, Qi XR (2011) Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomed 6:3087–3098

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nakamura, H., Maeda, H. (2013). Cancer Chemotherapy. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_15

Download citation

Publish with us

Policies and ethics