Skip to main content

Hydrophobic Drug Solubilisation

  • Chapter
  • First Online:
Fundamentals of Pharmaceutical Nanoscience

Abstract

Poorly soluble drugs have always been a challenge to the pharmaceutical industry. Today, it has been estimated that 40 % of new chemical entities fail in development because of adverse physical properties such as poor aqueous solubility. In this chapter, the authors look at the principals of drug solubility and dissolution and evaluate the use of drug nano-crystals and nano-size delivery systems such as liposomes, polymeric micelles and solid lipid nanoparticles in enhancing drug solubility. Additional benefits such as achieving site-specific delivery and facilitating cellular uptake are also discussed. The key advantages that nanotechnologies are able to offer and the challenges in the exploitation of these technologies are outlined with appropriate examples. Clinical experience is included to demonstrate the successful approach in using nanotechnologies for hydrophobic drug solubilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attama AA, Reichl S, Müller-Goymann CC (2008) Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 355:307–313

    Article  PubMed  CAS  Google Scholar 

  • Aulton ME (2007) Aulton’s pharmaceutics: the design and manufacture of medicines, 3rd edn. Churchill Livingstone, London

    Google Scholar 

  • BASF (2001) BASF pharm ingredients, helping make pharmaceuticals better. http://www2.basf.us/Pharma/pdf/Spec_CremophorELP.pdf

  • Bielawski K, Bielawska A, MuszyÅ„ska A, Poplawska B (2011) Cytotoxic activity of G3 PAMAM-NH2 dendrimer-chlorambucil conjugate in human breast cancer cells. Environ Toxicol Phar 32:364–372

    Article  CAS  Google Scholar 

  • Celano M, Calvagno MG, Bulotta S, Paolino D, Arturi F, Rotiroti D, Filetti S, Fresta M, Russo D (2004) Cytotoxic effects of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer 4:63

    Article  PubMed  Google Scholar 

  • Chen N, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16:354–360

    Article  PubMed  CAS  Google Scholar 

  • Cheng WP, Gray AI, Tetley L, Hang TLB, Schätzlein AG, Uchegbu IF (2006) Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7:1509–1520

    Article  PubMed  CAS  Google Scholar 

  • Cho J-K, Chun C, Kuh H-J, Song S-C (2012) Injectable poly(organophosphazene)-camptothecin conjugate hydrogels: synthesis, characterisation and antitumor activities. Eur J Pharm Biopharm 81:582–590

    Article  PubMed  CAS  Google Scholar 

  • Cortesi R, Esposito E, Menegatti E, Gambari R, Nastruzzi C (1996) Effect of cationic liposome composition of in vitro cytotoxicity and protective effect on carried DNA. Int J Pharm 139:69–78

    Article  CAS  Google Scholar 

  • Dressman JB, Amidon GL, Reppas C, Shah VP (1997) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15:11–22

    Article  Google Scholar 

  • El-Ridy MS, Mostafa DM, Shehab A, Nasr EA, El-Alim SA (2007) Biological evaluation of pyrazinamide liposomes for treatment of mycobacterium tuberculosis. Int J Pharm 330:82–88

    Article  PubMed  CAS  Google Scholar 

  • Fang J-Y, Fang C-L, Liu C-H, Su Y-H (2008) Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 70:633–640

    Article  PubMed  CAS  Google Scholar 

  • Farías T, de Ménorval LC, Zajac J, Rivera A (2009) Solubilization of drugs by cationic surfactants micelles: conductivity and 1H NMR experiments. Colloid Surf A 345:51–57

    Article  Google Scholar 

  • Florence TA, Atwood D (2006) Physiochemical principles of pharmacy, 4th edn. Pharmaceutical Press, London

    Google Scholar 

  • Gulati M, Grover M, Singh S, Singh M (1998) Lipophilic drug derivatives in liposomes. Int J Pharm 165:129–168

    Article  CAS  Google Scholar 

  • Han X, Ghoroi C, To D, Chen Y, Davé R (2011) Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. Int J Pharm 415:185–195

    Article  PubMed  CAS  Google Scholar 

  • Hoskins C, Cheng WP (2012b) Implementing nanotechnology and novel drug delivery systems to improve dissolution and solubilisation. Am Pharm Rev. http://www.americanpharmaceuticalreview.com/Featured-Articles/126889-Implementing-Nanotechnology-and-Novel-Drug-Delivery-Systems-to-Improve-Dissolution-and-Solubilization. Accessed 1 Feb 2013

  • Hoskins C, Ouaissi M, Lima SC, Cheng WP, Loureirio I, Mas E, Lombardo D, Cordeiro-da-Silva A, Ouassi A, Kong Thoo Lin P (2010) The study of in vitro and in vivo anticancer activity of a novel formulation incorporating PAA and BNIPDaoct against pancreatic cancer. Pharm Res 27:2694–2703

    Article  PubMed  CAS  Google Scholar 

  • Hoskins C, Kong Thoo Lin P, Tetley L, Cheng WP (2011) Novel fluorescent amphiphilic poly(allylamine) and their supramacromolecular self-assemblies in aqueous media. Polym Adv Technol 23:710–719

    Article  Google Scholar 

  • Hoskins C, Kong Thoo Lin P, Tetley L, Cheng W-P (2012) The use of nano polymeric self-assemblies based on novel amphiphilic polymers for oral hydrophobic drug solubilisation. Pharm Res 29:782–794

    Article  Google Scholar 

  • Huang FY, Mei WL, Li YN, Tan GH, Dai HF, Guo JL, Wang H, Huang YH, Zhao HG, Zhou SL, Li L, Lin YY (2012) The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. Eur J Cancer 48:2260–2269

    Article  PubMed  CAS  Google Scholar 

  • Iqbal J, Sarti F, Perera G, Bernkop-Schürch A (2011) Development and in vivo evaluation of an oral drug delivery system for paclitaxel. Biomaterials 32:170–175

    Article  PubMed  CAS  Google Scholar 

  • Kheradmandnia S, Vasheghani-Farahani E, Nostrati M, Atyabi F (2010) Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine 6:753–759

    Article  PubMed  CAS  Google Scholar 

  • Kwon G, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116

    Article  CAS  Google Scholar 

  • Lawrence MJ (1994) Surfactant systems: their use in drug delivery. Chem Soc Rev 23:417–424

    Article  CAS  Google Scholar 

  • Li AP (2005) Preclinical in vitro screening assays for drug-like properties. Drug Discov Today 2:179–185

    CAS  Google Scholar 

  • Liu Y, Wang P, Sun C, Zhao J, Du Y, Shi F, Feng N (2011) Bioadhesion and enhanced bioavailability of wheat germ agglutinin-grafted lipid nanoparticles for oral delivery of poorly water-soluble drug bufalin. Int J Pharm 419:260–265

    Article  PubMed  CAS  Google Scholar 

  • Malmstein M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, Basel, NY

    Book  Google Scholar 

  • Mathot F, des Rieux A, Ariën A, Schneider Y-J, Brewster M, Préat V (2007) Transport mechanism of mmePEG750P(CL-co-TMC) polymeric micelles across the intestinal barrier. J Control Release 124:134–143

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Yokoyama M, Kataoka K, Okano T, Sakurai Y, Kawaguchi T, Kakizoe T (1999) Reduction of the side effects of an antitumor agent, KRN5500, by incorporation of the drug into polymeric micelles. Japan J Cancer Res 90:122–128

    Article  CAS  Google Scholar 

  • Maysinger D, Lovrić J, Eisenberg A, Savić R (2007) Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 65:270–281

    Article  PubMed  CAS  Google Scholar 

  • Mehta RT (1996) Liposome encapsulation of clofazimine reduces toxicity in vitro and in vivo and improves therapeutics efficacy in the beige mouse model of disseminated Mycobacterium avium-M. intracellulare complex infection. Antimicrob Agents Chemother 40:1893–1902

    PubMed  CAS  Google Scholar 

  • Miglietta A, Cavalli R, Bocca C, Gabriel L, Gasco MR (2000) Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm 210:61–67

    Article  PubMed  CAS  Google Scholar 

  • Millard JW, Alvarez-Núñez FA, Yalkowsky SH (2002) Solubilization by cosolvents establishing useful constants for the log-linear model. Int J Pharm 245:153–166

    Article  PubMed  CAS  Google Scholar 

  • Mo R, Xiao Y, Sun M, Zhang C, Ping Q (2011) Enhancing effect of N-octyl-O-sulfate chitosan on etoposide absorption. Int J Pharm 409:38–45

    Article  PubMed  CAS  Google Scholar 

  • Moddaresi M, Brown MB, Zhao Y, Tamburic S, Jones SA (2010) The role of vehicle-nanoparticle interactions in topical drug delivery. Int J Pharm 400:176–182

    Article  PubMed  CAS  Google Scholar 

  • Mohammed AR, Weston N, Coombes AGA, Fitzgerald M, Perrie Y (2004) Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm 285:23–34

    Article  PubMed  CAS  Google Scholar 

  • Morgen M, Lu GW, Du D, Stehle R, Lembke F, Carvantes J, Ciotti S, Haskell R, Smithey D, Haley K, Fan C (2011) Targeted delivery of a poorly water-soluble compound to hair follicles using polymeric nanoparticle suspensions. Int J Pharm 416:314–322

    PubMed  CAS  Google Scholar 

  • Nii T, Ishii F (2005) Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm 298:198–205

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Article  PubMed  CAS  Google Scholar 

  • Ravenelle F, Vachon P, Rigby-Jones AE, Sneyd JR, Le Garrec D, Gori S, Lessard D, Smith DC (2008) Anaesthetic effects of propofol polymeric micelle: a novel water soluble propofol formulation. Br J Anaesth 101:186–193

    Article  PubMed  CAS  Google Scholar 

  • Rezaei SJ, Nabid MR, Niknejad H, Entezami AA (2012) Folate decorated thermoresponsive micelles based on star-shaoed amphiphilic block copolymers for efficient intracellular release of anticancer drugs. Int J Pharm 437:70–79

    Article  PubMed  CAS  Google Scholar 

  • Rouxhet L, Dinguizli M, Latere Dwan’lsa JP, Ould-Ouali L, Twaddle P, Nathan A, Brewster ME, Rosenblatt J, Ariën A, Préat V (2009) Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs. Int J Pharm 382:244–253

    Article  PubMed  CAS  Google Scholar 

  • Savic R, Luo L, Eisenberg A, Mayasinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618

    Article  PubMed  CAS  Google Scholar 

  • Serajuddin ATM (2007) Salt formation to improve drug solubility. Adv Drug Deliv Rev 59:603–616

    Article  PubMed  CAS  Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Ravi Kumar MNV (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230

    Article  PubMed  CAS  Google Scholar 

  • Sinko PJ (2005) Martin’s physical pharmacy and pharmaceutical sciences, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Subedi RK, Kang KW, Choi H-K (2009) Preparation and characterisation of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci 37:508–513

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre J-P, Tang M-C, Furtos A, Leclair G, Meunier M, Leroux J-C (2011) Nanonization of megastrol acetate by laser fragmentation in aqueous milieu. J Control Release 149:273–280

    Article  PubMed  CAS  Google Scholar 

  • Thompson C, Ding C, Qu X, Yang Z, Uchegby IF, Tetley L, Cheng WP (2008) The effect of polymer architecture on the nano self-assemblies based on novel comb-shaped amphiphilic poly(allylamine). Colloid Polym Sci 286:1511–1526

    Article  CAS  Google Scholar 

  • Thompson CJ, Tetley L, Cheng WP (2010) The influence of polymer architecture on the protective effect of novel comb shaped amphiphilic poly(allylamine) against in vitro enzymatic degradation of insulin—towards oral insulin delivery. Int J Pharm 383:216–227

    Article  PubMed  CAS  Google Scholar 

  • WHO (2006) Proposal to waive in vivo bioequivalence requirements for WHO model list of essential medicines immediate-release, solid oral dosage forms. Annex 8 of WHO Expert Committee on specification for pharmaceutical preparations. Available at http://apps.who.int/prequal/info_general/documents/TRS937/WHO_TRS_937__annex8_eng.pdf

  • Xiao H, Qi R, Liu S, Hu X, Duan T, Zheng Y, Huang Y, Jing X (2011) Biodegradable polymer-cisplatin (IV) conjugate as a pro-drug of cisplatin (II). Biomaterials 32:7732–7739

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Cui F-D, Choi M-K, Cho J-W, Chung S-J, Shim C-K, Kim D-D (2007) Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 338:317–326

    Article  PubMed  CAS  Google Scholar 

  • Yeh M-K, Chang L-C, Chiou AH-J (2009) Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech 10:166–171

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama M (2010) Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 7:145–158

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lv H, Jiang K, Gao Y (2011a) Enhanced bioavailability after oral and pulmonary administration of baicalien nano-crystal. Int J Pharm 420:180–188

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Shi Y, Chen Y, Hao J, Sha X, Fang X (2011b) The potential of pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials 32:5934–5944

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Rhue RD (2000) Screening commercial surfactants suitable for remediating DNAPL source zones by solubilisation. Environ Sci Technol 34:1985–1990

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoskins, C., Cheng, W.P. (2013). Hydrophobic Drug Solubilisation. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_14

Download citation

Publish with us

Policies and ethics